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Abstract
Can instrumental variables be found from data? While in-
strumental variable (IV) methods are widely used to iden-
tify causal effect, testing their validity from observed data
remains a challenge. This is because validity of an IV de-
pends on two assumptions, exclusion and as-if-random treat-
ment assignment, that are largely believed to be untestable
from data. In this paper, we show that under certain restric-
tive conditions, testing for instrumental variables is possible.
We build upon prior work on necessary tests to derive a test
that characterizes the odds of being a valid instrument, thus
yielding the name “necessary and probably sufficient”. The
test works by defining the class of invalid-IV and valid-IV
causal models as Bayesian generative models and comparing
their marginal likelihood based on observed data. When all
variables are discrete, we also provide a method to efficiently
compute these marginal likelihoods.
We evaluate the test on multiple simulations for binary data,
inspired by an open problem for IV testing. We find that the
test is most powerful when the instrument has moderate-to-
weak strength; incidentally, such instruments are commonly
used in observational studies. Among as-if-random and ex-
clusion, it detects exclusion violations with higher power.
That said, the results are sensitive to the choice of prior over
causal models. We use a uniform prior; in practice domain
knowledge will be useful to select a suitable prior.

The method of instrumental variables is one of the most
popular ways to estimate causal effects from observational
data in the social and biomedical sciences. Increasingly, it
is also being used in computing systems to estimate causal
effect from log data (Sharma, Hofman, and Watts 2015;
Peysakhovich and Eckles 2018). The key idea is to find sub-
sets of the data that resemble a randomized experiment, and
use those subsets to estimate causal effect. (Angrist and Pis-
chke 2008). Specifically, consider the canonical causal in-
ference problem shown in Figure 1a. The goal is to estimate
the effect of a variableX on another variable Y based on ob-
served data, where X is commonly referred to as the treat-
ment and Y as the outcome. However, there are unobserved
(and possibly unknown) common causes for X and Y that
confound observed association between X and Y, making
the isolation of X’s effect on Y a non-trivial problem. Un-
like methods such as stratification or matching that condi-
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tion on all observed common causes (Morgan and Winship
2014), the instrumental variable method relies on finding an
additional variable Z that acts as an instrument to modify
the distribution of X , as shown by the arrow Z → X in
Figure 1a. The advantage is that we do not need to assume
that all confounding common causes are observed to esti-
mate the causal effect. To be a valid instrument, however, Z
should satisfy three conditions (Angrist and Pischke 2008).
First, Z should have a substantial effect on X . That is, Z
causes X (Relevance). Second, Z should not cause Y di-
rectly (Exclusion); the only association between Z and Y
should be through X . Third, Z should be independent of
all the common causes U of X and Y (Ignorable or As-
if-random treatment assignment). The latter two conditions
are shown in the graphical model in Figure 1b. These con-
ditions can also be expressed as conditional independence
constraints: exclusion and ignorable assignment conditions
imply Z ⊥⊥ Y |X,U and Z ⊥⊥ U respectively.

However, the Achilles’ heel of any instrumental vari-
able analysis is that these core conditions are never tested
systematically. Except for relevance (which can be tested
by measuring observed correlation between Z and X), the
other two conditions depend on unobserved variables U
and thus are harder to check. Although necessary tests
do exist that can weed out bad instruments (Pearl 1995;
Bonet 2001), in practice exclusion and as-if-random as con-
sidered as assumptions and often defended with qualitative
domain knowledge. This can be problematic because the en-
tire validity of the IV estimate depends on the exclusion and
as-if-random conditions.

In this paper, therefore we propose a test for validating
instrumental variables that can be used to find, evaluate and
compare potential instruments for their validity. Although
instruments are untestable in general (Morgan and Winship
2014), we find that in many cases it is possible to distin-
guish between invalid and valid instruments. To do so, the
proposed test applies the principles of Bayesian model com-
parison to causal models and estimates marginal likelihood
of an valid instrument given the observed data. Comparing
this to the corresponding marginal likelihood for an invalid
instrument provides a metric for evaluating the validity of
an instrument. The intuition is that if the instrument is valid,
then causal models with an instrument as in Figure 1a should
be able to generate observed data with higher likelihood than
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Figure 1: Standard instrumental variable causal model and
violations of the two assumptions—exclusion and as-if-
random—that lead to an invalid-IV model.

all other causal models. Specifically, let Valid-IV refer to the
class of all causal models that yield a valid instrument and
Invalid-IV to the class of causal models that yield an invalid
instrument. Given an observed data distribution P (X,Y, Z),
the proposed method computes the ratio of marginal likeli-
hoods for Valid-IV and Invalid-IV models. Whenever this
marginal likelihood ratio is above a pre-determined accep-
tance threshold, we can conclude that the instrument is likely
to be valid. This notion of validity, however, depends on the
specific prior used for unidentified distributions and thus the
results are sensitive to the choice of prior. We use the uni-
form prior in this work and leave other variations for fu-
ture work. To distinguish this probabilistic notion from de-
terministic sufficiency—conditions that would determine in
absolute whether an instrument is valid or not—we call an
instrument that passes the marginal likelihood ratio test as
probably sufficient.

Combining the above approach with necessary tests pro-
posed in past work leads to a Necessary and Probably Suf-
ficient (NPS) test for instrumental variables. The NPS test
proceeds as follows. If the observed data does not satisfy the
necessary conditions, then it is declared invalid. If it does,
then we proceed to estimate the marginal likelihood ratio
over Valid-IV and Invalid-IV models. When all variables are
discrete, we provide a general implementation of this test
that makes no assumptions about the nature of functional re-
lationships between the treatment, outcome and instrument.

Finally, any statistical test is only as good as the deci-
sions it helps to support. Among the two IV assumptions,
simulations show that the NPS test is more effective at de-
tecting violations of the exclusion restriction. We also find
that the proposed NPS test is most effective for validating
instruments having low correlation with the treatment X .
Incidentally, most of the instruments used in observational
studies in the social and biomedical sciences have weak to
moderate strength, well-suited to the NPS test. To demon-
strate the test’s usefulness in practice, we first consider an
open problem proposed by (Palmer et al. 2011) for validat-
ing an instrumental variable and show that the NPS test can
identify valid instruments in that setting. We then evaluate
effectiveness of the NPS test on multiple simulated datasets.

Background: Testability of an IV
Since sufficient conditions for validity of an instrument
(Z ⊥⊥ U and Z ⊥⊥ Y |X,U ) depend on an unobserved vari-
able U , the validity of an instrumental variable is largely
believed to be untestable from observational data (Morgan
and Winship 2014). Pearl (1995), however, discovered that

the specific causal graph structure in Figure 1 imposes con-
straints on the observed probability distribution over Z, X
and Y . The causal model from Figure 1a can be written as:

y = f(x, u); x = g(z, u) (1)

where f and g are arbitrary deterministic functions and U
represents arbitrary, unobserved random variables that are
independent of Z. Using this framework, Pearl derived a
necesssary test that any observed data generated from a valid
instrumental variable model must satisfy (Pearl 1995). For
binary variables Z, X and Y ,

P (Y = 0, X = 0|Z = 0) + P (Y = 1, X = 0|Z = 1) ≤ 1

P (Y = 0, X = 1|Z = 0) + P (Y = 1, X = 1|Z = 1) ≤ 1

P (Y = 1, X = 0|Z = 0) + P (Y = 0, X = 0|Z = 1) ≤ 1

P (Y = 1, X = 1|Z = 0) + P (Y = 0, X = 1|Z = 1) ≤ 1 (2)

Typically, researchers make an additional assumption that
helps to derive a point estimate for the Local Average Treat-
ment Effect (LATE). This assumption, called monotonicity
(Angrist and Imbens 1994), precludes any defiers to treat-
ment in the population (Angrist and Pischke 2008). That is,
we assume that g(z1, u) ≥ g(z2, u) whenever z1 ≥ z2. Un-
der these conditions, Pearl showed that we can obtain tighter
inequalities.

P (Y = y,X = 1|Z = 1) ≥ P (Y = y,X = 1|Z = 0) ∀y ∈ {0, 1}
P (Y = y,X = 0|Z = 0) ≥ P (Y = y,X = 0|Z = 1) ∀y ∈ {0, 1}

Whenever any of these inequalities are violated, it implies
that one or more of the IV assumptions—exclusion, as-if-
random or monotonicity—are violated.

Moreover, when X , Y and Z are binary, this test is not
only necessary, it is the strongest necessary test possible
(Bonet 2001; Kitagawa 2015).Bonet (2001) extended this
work to create the strongest necessary test when the vari-
ables are discrete—if an observed data distribution satisfies
the test, then there does exist at least one valid-IV causal
model that could have generated the data. We refer to this
test as the Pearl-Bonet test.

Such a test weeds out bad instruments, but is inconclusive
whenever an instrument passes the test. Sufficient tests exist,
but require prohibitive assumptions such as knowing another
valid instrumental variable as in the Durbin-Wu-Hausman
test (Nakamura and Nakamura 1981), or stipulating that con-
founders have no effect on the outcome.

Necessary and Probably Sufficient (NPS) test
Without prohibitive assumptions, establishing sufficiency for
a validity test is non-trivial. In particular, the usual method of
comparing the maximum data likelihood of the two classes
of IV models, Valid-IV or Invalid-IV, provides us no infor-
mation. This is because Invalid-IV class of models (as in
Figure 1b) is more general than the Valid-IV class and thus
is always as likely (or more) to generate the observed data.

Instead of comparing maximum likelihoods of model
classes, we turn to estimating likelihoods of individual
causal models from Invalid-IV and Valid-IV classes. The in-
tuition is that while the Invalid-IV class may always have a
causal model that matches likelihood of the Valid-IV class
for a valid instrument, there will be many other Invalid-IV



models that provide a lower likelihood for the data. By gen-
erating models with different violations of the Exclusion and
As-if-random conditions, we can estimate the data likeli-
hood over individual models in the Invalid-IV class. Averag-
ing over all models in the Valid-IV and Invalid-IV classes,
we expect marginal likelihood to be higher for the Valid-IV
class for data generated from a Valid-IV model. The idea
of comparing different models from Valid-IV and Invalid-
IV classes is similar to sensitivity analysis, except that we
are interested in the likelihood of data rather than resultant
causal estimates.

Thus, unlike necessary tests (Ramsahai and Lauritzen
2011; Kitagawa 2015) that refute a null hypothesis that ob-
served data was generated from a valid-IV model, proba-
ble sufficiency requires estimating the relative probability of
valid-IV and invalid-IV models given observed data. When
the relative probability—formally, marginal likelihood—is
high, the instrument is likely to be valid. Conversely, when
it is low, the instrument is likely to be invalid. Based on this,
we now provide a definition for probable sufficiency.

Probable Sufficiency for Instrumental Variables: If an
observed data distribution passes the Pearl-Bonet necessary
test, how likely is it that it was generated from a valid-IV
model compared to an invalid-IV model?

Combined, the Pearl-Bonet test and our probable suffi-
ciency test provide a framework for testing instrumental
variables, which we call the Necessary and Probably Suffi-
cient (NPS) test for instrumental variables. Throughout, we
assume that Z, X and Y are all discrete variables.

Generating valid-IV and invalid-IV causal models
As mentioned above, our strategy depends on simulating
all causal models—both valid-IV and invalid-IV—that could
have generated the observed data. Therefore, we describe a
probabilistic generative meta-model of how observed data is
generated from a causal model, which in turn, is generated
based on the as-if-random and exclusion assumptions.

Let us first define the valid-IV and invalid-IV models for-
mally in terms of the two IV assumptions: exclusion and
as-if-random. A valid IV model does not contain an edge
from Z → Y or from U → Z, as shown in Figure 1a.
This implies that both Exclusion and As-if-random condi-
tions hold for a valid-IV model. Conversely, a causal model
is an invalid IV model when at least one of Exclusion or
As-if-random conditions is violated, as shown by the dotted
arrows in Figure 1b. Therefore, given the causal structure
Z → X → Y , there are two classes of causal models that
can generate observed data distributions over X , Y and Z:

• Valid-IV model: E = True and R = True

• Invalid-IV model: Not (E = True and R = True)

where E denotes the exclusion assumption and R denotes
the as-if-random assumption.

Each of these classes of causal models—valid and in-
valid IV—in turn contains multiple causal models, based
on the specific parameters (θ) describing each edge of the
graph. This one-to-many relationship between conditions for
IV validity and causal models can be made precise using

Exclusion

Causal Model

As-if-Random θ

Data

NecTestResult

Figure 2: A probabilistic graphical meta-model describing
the connection between IV conditions and specific causal
models. Note that arrows are dotted to distinguish these
probabilistic diagrams from the causal diagrams in Fig. 1.

a generative meta-model, as shown in Figure 2. We show
dotted arrows to distinguish this (probabilistic) generative
meta-model from the causal models described earlier. The
meta-model entails the following generative process: Based
on the configuration of the Exclusion and As-if-Random
conditions, one of the causal model classes—Valid or In-
valid IV—is selected. A specific model (Causal Model node)
is then generated by parameterizing the selected class of
causal models, where we use θ to denote model parame-
ters. The causal model results in a probability distribution
over Z, X and Y , from which observed data (Data node) is
sampled. Finally, we can apply Pearl-Bonet necessary test
on the observed data, which leads to the binary variable
NecTestResult. For a given problem, we observe the data
D and result of the Pearl-Bonet necessary test. All other
variables in the meta-model are unobserved.

Marginal likelihood of Valid-IV and Invalid-IV
Let PT denote whether the observed data passed the neces-
sary test. We can compare the likelihood of observing PT
and D given that both Exclusion and As-if-random condi-
tions are valid, versus when they are not.
Theorem 1. Given a representative data sample D drawn
from P (X,Y, Z) over variables X , Y , Z, and result of the
Pearl-Bonet necessary test PT on the data sample, the va-
lidity of Z as an instrument for estimating causal effect of
X on Y can be decided using the following evidence-ratio
of valid and invalid classes of models:

Validity-Ratio =
P (E,R|PT,D)

P (¬(E,R)|PT,D)

=
P (PT,D|E,R) ∗ P (E,R)

P (PT,D|¬(E,R)) ∗ P (¬(E,R))

=
P (M1)

P (M2)

∫
M1:m is valid P (m|E,R)P (D|m)dm∫

M2:m is invalid P (m|¬(E,R))P (D|m)dm
(3)

where M1 and M2 denote classes of valid-IV and invalid-
IV causal models respectively. P (D|m) represents the like-
lihood of the data given a causal model m. P (m|E,R) and
P (m|¬(E,R) denote the prior probability of any model m
within the class of valid-IV and invalid-IV causal models re-
spectively.

While we are additionally using the result of the Pearl-
Bonet necessary test to compute evidence, the Validity-Ratio



reduces to the Bayes Factor (Kass and Raftery 1995). The
proof of the theorem follows from the structure of the gen-
erative meta-model and properties of the Pearl-Bonet neces-
sary test.

Proof. Let us first consider the ratio of marginal likelihoods
of the two model classes.

ML-Ratio =
P (PT = 1, D = d|E,R)

P (PT = 1, D = d|¬(E,R))
(4)

Since the Pearl-Bonet test is a necessary test, we know that
P (PT |E,R) = 1 if the true data distributions are known.
However, in practice, we will have a data sample and apply
a statistical test. Therefore in some cases the test may return
Fail even if E and R are satisfied, leading to the following
expression for the numerator:

P (PT = 1, D = d|E,R)

= P (PT = 1|D = d,E,R)P (D = d|E,R)

= P (PT = 1|D = d)P (D = d|E,R) (5)

Further, for any causal model m, we know with certainty
whether it follows exclusion and as-if-random restrictions.
In particular, P (minvalidIV |E,R) = 0. Using this observa-
tion, we can write P (D|E,R) as:

P (D|E,R) =

∫
m

P (D,m|E,R)dm (6)

=

∫
m

P (m|E,R)P (D|m)dm =

∫
M1:m is valid

P (m|E,R)P (D|m)dm

Similarly, the denominator can be expressed by,
P (PT,D|¬(E,R)) = P (PT |D,¬(E,R))P (D|¬(E,R))

= P (PT |D)P (D|¬(E,R))

= P (PT |D)

∫
m

P (D,m|¬(E,R))dm

= P (PT |D)

∫
m

P (m|¬(E,R))P (D|m,¬(E,R))dm

= P (PT |D)

∫
M2:m is invalid

P (m|¬(E,R))P (D|m)dm (7)

where we use the conditional independencies entailed by
the generative meta-model.

Combining Equations 5, 6 and 7, we obtain the ratio of
marginal likelihoods:

ML-Ratio =
P (PT,D|E,R)

P (PT,D|¬(E,R))

=

∫
M1:m is valid P (m|E,R)P (D|m)dm∫

M2:m is invalid P (m|¬(E,R))P (D|m)dm
(8)

Finally, by definition of model classes M1 and M2, they
correspond to valid and invalid classes of causal models.
Thus,

P (E,R)

P (¬(E,R))
=

P (M1)

P (M2)
(9)

The above two equations lead us to the main statement of
the theorem:

P (PT,D|E,R) ∗ P (E,R)

P (PT,D|¬(E,R)) ∗ P (¬(E,R))

=
P (M1)

P (M2)

∫
M1:m is valid P (m|E,R)P (D|m)dm∫

M2:m is invalid P (m|¬(E,R))P (D|m)dm
(10)

As with the Bayes Factor, estimation of the Validity-Ratio
depends on the prior on causal models because the model
is not identified. Since the configuration of Exclusion and
As-if-random conditions does not provide any more infor-
mation apart from restricting the class of causal models, we
can assume a uninformative uniform prior on causal models
within each of the Valid-IV and Invalid-IV classes. If suf-
ficient data is available, one may use the fractional Bayes
Factor (O’Hagan 1995) to split the sample and use the first
subsample to find a prior on causal models using data likeli-
hood, and the second to estimate the Validity Ratio. We dis-
cuss the effect of using other model priors in the Discussion.
Using a uniform model prior leads to the corollary:
Corollary 1. Using a uniform model prior P (M1|E,R) for
valid-IV models, P (M2|¬(E,R)) for invalid-IV models, the
Validity-Ratio from Theorem 1 reduces to

Validity-Ratio =
P (M1)

P (M2)

K2

∫
M1:m is valid P (D|m)dm

K1

∫
M2:m is invalid P (D|m)dm

(11)

where K1 and K2 are normalization constants.

NPS Algorithm for testing IVs
Based on the above theorem, we present the NPS algorithm
for testing the validity of an instrumental variable below. As-
sume that the observational dataset contains values for three
discrete variables: cause X , outcome Y and a candidate in-
strument Z.

1. Estimate P (Y,X|Z) using observational data and run the
Pearl-Bonet necessary test. If the necessary test fails, Re-
turn REJECT-IV.

2. Else, compute the Validity-Ratio from Equation 3 for the
one or more of the following types of violations (can ex-
clude violations that are known apriori to be impossible):
• Exclusion may be violated: Z 6⊥⊥ Y |X,U
• As-if-random may be violated: Z 6⊥⊥ U

• Both may be violated:Z 6⊥⊥ Y |X,U ;Z 6⊥⊥ U

3. If all Validity Ratios are above a pre-determined thresh-
old γ, then return ACCEPT-IV. Else if any Validity Ratio
is less than γ−1, then return REJECT-IV. Else, return IN-
CONCLUSIVE.

Computing the Validity Ratio
The key detail in implementing the NPS test is in evaluat-
ing the integrals in Equation 3, since there can be infinitely
many valid-IV or invalid-IV causal models. In this section
we present a possible approach using the response variables
framework from (Balke and Pearl 1994). We extend this
framework to also work with invalid-IV causal models.

The response variable framework
A response variable acts as a selector on a non-deterministic
function and converts it into a a set of deterministic func-
tions, indexed by the response variable. Depending on the
value of the response variable, one of the deterministic func-
tions is invoked. Under this transformation, the response
variables become the only random variables in the system,
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Figure 3: Causal graphical model with response variables
RX and RY denoting the effect of unknown, unobserved U .

and thus any causal model can be expressed as a probabil-
ity distribution over the response variables. Note that there
is no restriction on U—they can be discrete or continuous—
but instead restrict the observed variables to be discrete.

Response variables for valid-IV models For valid-IV
causal models, we can write the following structural equa-
tions for observed variables X , Y and Z (from Eqn 1).

y = f(x, uy);x = g(z, ux); z = h(uz) (12)

where Ux, Uy and Uz represent error terms. Ux and Uy are
correlated. As-if-random condition (Z ⊥⊥ U ) stipulates that
Uz ⊥⊥ {Uy, Ux}. Exclusion condition is satisfied because
function f does not depend on z.

Since there are a finite number of functions between dis-
crete variables, we can represent the effect of unknown con-
founders U as a selection over those functions, indexed by
a variable known as a response variable. For example, in
Eqn 12, Y can be written as a combination of 4 determin-
istic functions of x, after adding a response variable, ry .

y =


fry0(x) ≡ 0, if ry = 0

fry1(x) ≡ x, if ry = 1

fry2(x) ≡ x̃, if ry = 2

fry3(x) ≡ 1, if ry = 3

(13)

That is, different values of U change the value of Y from
what it would have been without U’s effect, which we cap-
ture through ry . Intuitively, these ry refer to different ways
in which individuals may respond to the treatment X . Some
may have no effect irrespective of treatment(ry = 0), some
may only have an effect when X = 1 (ry = 1), some may
only have an effect when X=0 (ry = 2), while others would
always have an effect irrespective of X (ry = 3).

Similarly, we can write a deterministic functional form for
X , leading to the transformed causal diagram with response
variables in Figure 3a.

x =


grx0(z) ≡ 0, if rx = 0

grx1(z) ≡ z, if rx = 1

grx2(z) ≡ z̃, if rx = 2

grx3(z) ≡ 1, if rx = 3

(14)

Similar to ry , rx = {0, 1, 2, 3} can be interpreted in terms
of a subject’s compliance behavior to an instrument: never-
taker, complier, defier, and always-taker (Angrist and Pis-
chke 2008). Finally, z can be assumed to be generated by its
own response variable, rz . That is, Z = RZ .

Given this framework, a specific value of the joint prob-
ability distribution P (rz, rx, ry) defines a specific, valid
causal model for an instrument Z. Exclusion condition is

satisfied because the structural equation for Y does not de-
pend on Z. For as-if-random condition, we additionally re-
quire that Uz ⊥⊥ {Ux, Uy}. Since RX and RY represent
the effect of U as shown in Figure 3a, the as-if-random
condition translates to RZ ⊥⊥ {RX , RY }, implying that
P (RZ , RX , RY ) = P (RZ)P (RX , RY ). Using this joint
probability distribution over rz , rx, and ry , any valid-IV
causal model for x, y and z can be parameterized. For in-
stance, when all three variables are binary, RZ , RX and RY

will be 2-level, 4-level and 4-level discrete variables respec-
tively. Therefore, each unique causal model can be repre-
sented by 2+4x4=18 dimensional probability vector θ where
each θi ∈ [0, 1]. In general, for discrete-valued Z, X and Y
with levels l, m and n respectively, θ will be a (l +mlnm)-
dimensional vector.

Response variable framework for invalid IVs While
past work only considered Valid-IV models, we now show
that the same framework can also be used to represent
invalid-IV models, which are characterized by violations of
Exclusion and/or As-if-random assumptions.
Exclusion is violated Exclusion violation implies that Z ⊥⊥
Y |X,U does not hold, and thus Z may affect Y directly. To
account for this, we redefine the structural equation for Y to
depend on both Z and X: y = h(X,Z). This corresponds
to adding a direct arrow from Z to Y as shown in Figure 3b.
In response variables framework, this translates to:

y =



hry0(x, z) if ry = 0

hry1(x, z) if ry = 1

hry2(x, z) if ry = 2

...

hry15(x, z) if ry = 15

(15)

where RY now has 16 discrete levels, each corresponding
to a deterministic function from the tuple (x, z) to y.

As with valid-IV causal models, any invalid-IV causal
model can be denoted by a probability vector for P (RZ)
and P (RX , RY ). However, the dimensions of the probabil-
ity vector will increase based on the extent of Exclusion
violation. For full exclusion violation, dimensions will be
l +mlnlm.
As-if-random is violated Violation of as-if-random does
not change the structural equations, but it changes the de-
pendence between RZ and (RX , RY ). If as-if-random as-
sumption does not hold, then RZ is no longer indepen-
dent of (RX , RY ). Therefore, we can no longer decompose
P (RZ , RX , RY ) as the product of independent distributions
P (Rz) and P (RX , RY ) and dimensions of θ will be lmlnm.
Both exclusion and as-if-random are violated In this case
the structural equation for Y is given by Equation 15 and
RZ is not independent of (RX , RY ). Thus the dimensions
of θ increase to lmlnlm.

Thus, under the response variable framework, choosing a
causal model is equivalent to sampling a probability vector θ
from the joint probability distribution P (rx, ry , rz). We use
this to compute the integrals in Equation 3 by transform-
ing them to an integral over θ parameters. Details are in the
Appendix. When variables are discrete, we also provide ex-
tensions to the Pearl-Bonet test to handle monotonicity and
practical implementation, described in the Appendix.



Simulations: How powerful is the NPS test?
We first simulate datasets and check whether estimating the
Validity Ratio can correctly identify whether they contain a
valid instrumental variable or not. Throughout, we assume
monotonicity and that Z, X and Y are binary. For statistical
significance of the Pearl-Bonet test, we use an exact test by
Wang, Robins, and Richardson (2016) which converts the
inequalities of the necessary test into a version of one-tailed
Fisher’s exact test.

An example open problem for binary IV
To start with, we consider the following causal model from
(Palmer et al. 2011) where the Pearl-Bonet necessary test
fails to detect violation of IV assumptions.

Z ∼Bern(0.5);U ∼ Bern(0.5)

X ∼Bern(pX); pX = 0.05 + 0.1Z + 0.1U

Y0 ∼Bern(p0); p0 = 0.1 + 0.05X + 0.1U

Y1 ∼Bern(p1); p1 = 0.1 + 0.2Z + 0.05X + 0.1U

Y2 ∼Bern(p2); p2 = 0.1 + 0.05Z + 0.05X + 0.1U (16)

where Z, X , Yi are the instrument, cause and outcome re-
spectively and all variables are binary. There can be three
datasets depending on which Y is chosen as the outcome:
D0(Z,X, Y0), D1(Z,X, Y1),D2(Z,X, Y2). Z is a valid in-
strument only when the outcome is Y0, not for Y1 and Y2 be-
cause they violate the exclusion restriction. Although Pearl-
Bonet test is able to rule out D1 as an invalid-IV dataset,
Palmer et al. find that it is inconclusive for D0 and D2.

We validate the same three datasets using the NPS test by
simulating 2000 data points from each of their causal mod-
els. Table 1 shows that comparing Validity-Ratio can be used
to identify the datasets for which Z is a valid instrument.
We assume a uniform prior over models within valid-IV and
invalid-IV model classes and use the equation from Corol-
lary 1. Further, in the absence of any additional information,
we can assume an equal probability of the instrument being
valid or invalid (P (M1) = P (M2)). The second and third
columns show the log marginal likelihood for invalid-IV
models when either of exclusion or as-if-random is violated.
This leads to the Validity Ratio shown in the fifth column,
as a ratio of marginal likelihood of the Valid-IV model class
over marginal likelihood of the Invalid-IV model class. Va-
lidity Ratio is the highest (nearly 20) for D0 and the lowest
(< 10−13) for D2, thereby clearly distinguishing between
the two datasets. Dataset D1 has a Validity Ratio less than
1, indicating that it is less likely to be a valid instrument,
especially in comparison to dataset D0.

Simulating a broad range of binary datasets
Motivated by the example from (Palmer et al. 2011), we now
construct a set of datasets by changing the parameters of the
Palmer et al.’s example model presented above. Z and U are
generated from a Bernoulli distribution as before, but pa-
rameter for effect of Z on X can have five different values:
{0.1, 0.3, 0.5, 0.7, 0.9}. Similarly, the effect of X on Y takes
values in this set. Each of U’s effect on X, U’s effect on Y,
U’s effect on Z, and Z’s effect on Y takes on values from
the set {0, 0.1, 0.3, 0.5}. For simplicity, we assume that U’s

Log Marginal Likelihood

Dataset Exclusion Violated As-if-random Violated Valid IV Validity Ratio

D0 : Z,X, Y0 -3080 -3086 -3077 20.1
D1 : Z,X, Y1 -3168 -3161 -3163 0.13
D2 : Z,X, Y2 -3366 -3367 -3397 3.4x10−14

Table 1: Validity Ratio estimates for an example open prob-
lem proposed for testing binary instrumental variables. The
NPS test can distinguish between valid-IV (D0) and invalid-
IV (D1, D2) datasets. Bold values denote the maximum
marginal likelihood for each dataset.

effect on X and Y is the same. Combined, these parameters
lead to 5x5x4x4x4=1600 simulations, each of which yields
a different causal model. From each causal model, we gener-
ate an i.i.d. dataset with size=50000 of < Z,X, Y > tuples.

These simulated datasets span the range of datasets with
a valid or invalid instrument. When the parameters for the
effect of U on Z and the effect of Z on Y are zero, the causal
model contains a valid instrument. Otherwise, it contains an
invalid instrument. We make the same assumptions as be-
fore: equal prior probability of an invalid or valid instrument,
and a uniform prior over causal models within both Valid-IV
and Invalid-IV model classes. On each dataset, we compute
the Validity-Ratio using the equation from Corollary 1.

NPS test can detect exclusion violation, except when in-
strument is strong When only exclusion is violated, Fig-
ure 4a shows the log Validity-Ratio as the strength of the ex-
clusion violation is increased. We find that when the param-
eter for effect of Z on X (instrument strength) is below 0.5,
Validity Ratio is below 1 consistently even for minor viola-
tion of the exclusion restriction. This holds true even as the
true causal effect is varied: scanning horizontally through
the rows shows a similar trend. Above results indicate that
exclusion can be tested using the Validity-Ratio as long as
the instrument is not too strong (effect parameters < 0.5).

As-if-random is hard to detect, except when instrument
is very weak Next, we look at violation of the as-if-
random restriction only (Figure 4b). We find that as-if-
random violation is harder to detect than exclusion. When
the instrument is very weak (effect parameter for Z on X is
0.1), the Validity-Ratio goes below 1 as the strength of as-if-
random violation is increased. This result is consistent even
as the direct causal effect from X to Y is varied. However,
when instrument strength increases to 0.3, the Validity Ratio
stays above 1 and NPS test is unable to detect violation.

Violations of both assumptions is easier to detect Fi-
nally, we look at the case when both exclusion and as-if-
random are violated. Figure 4c shows the log Validity-Ratio
as the strength of exclusion violation varies, for a fixed as-
if-random violation of 0.5 (i.e., the parameter for U’s effect
on Z is 0.5). When both exclusion and as-if-random are vi-
olated, it becomes easier to identify datasets with invalid in-
struments. Even when the is instrument is moderately strong
(effect of Z on X is 0.7), we find that Validity Ratio quickly
drops to less than 1 as the strength of exclusion violation in-
creases. This pattern is consistent as the true causal effect of



(a) Only Exclusion Violated

(b) Only As-if-random Violated

(c) Both Violated (strength of as-if-random violation=0.5)

Figure 4: Log Validity-Ratio computed from the NPS test on
simulated binary datasets with different violations. (Rows)
zx denotes the direct effect of Z on X. (Columns) xy denotes
the direct effect of X on Y.

X on Y is varied across datasets. When the instrument’s ef-
fect on X is the strongest at 0.9, NPS test can still detect vio-
lations of exclusion with a severity higher than 0.3. Detailed
results and other simulation configurations are in Appendix.

Validating American Economic Review studies
We also apply the NPS test to validate IVs used by 5 recent
studies from a leading economics journal, American Eco-
nomic Review. After binarizing variables, we find that 2 out
5 studies do not pass the Pearl-Bonet test and have low Va-
lidity Ratios. Details on the evaluation are in Appendix.

Discussion and Future Work
We presented a probably sufficient test for instrumental vari-
ables using necessary tests proposed in past work. Simula-
tions show that the test is more effective for detecting vio-
lation of the exclusion assumption, and that effectiveness of
the test increases as the strength of the instrument decreases.

Nevertheless, the proposed test has several limitations.
First, it relies on the specification of a prior over causal mod-

els for both the Valid-IV and Invalid-IV model classes. In
this paper we chose a uniform prior. It will be useful to study
the sensitivity of the Validity-Ratio to changes in the prior.
Second, the proposed implementation of the NPS test works
only for discrete variables. Third, even for discrete variables,
the test is often inconclusive. If the Validity-Ratio lies close
to 1 (from -1 to 0 on the log scale), then we are unable to
distinguish between valid and invalid instruments. Based on
the simulation results, we conjecture that in such cases the
resultant causal estimate will not have high bias even for in-
valid instruments, but this claim needs more evidence.

More generally, testing is a step towards the final goal
of valid causal estimates. We would like to explore con-
nections of our Bayesian testing framework to recent work
on estimating bounds for similar problems (Silva and Evans
2016). Looking forward, the proposed test can be used to
compare potential instruments for their validity, allow trans-
parent comparisons between multiple IV studies, and enable
a more data-driven search for natural experiments.

Appendix Details on computing Validity Ratio, exten-
sions to discrete variables, and extensive simulation results
are available at: https://arxiv.org/abs/1812.01412
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