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Abstract

We propose a causal interpretation of Bayesian
hypergraphs (Javidian et al. 2018), a probabilis-
tic graphical model whose structure is a directed
acyclic hypergraph, that extends the causal interpre-
tation of LWF chain graphs. We provide intervention
formulas and a graphical criterion for intervention
in Bayesian hypergraphs that specializes to a new
graphical criterion for intervention in LWF chain
graphs and sheds light on the causal interpretation
of interaction as represented by undirected edges
in LWF chain graphs or heads in Bayesian hyper-
graphs.

Introduction and Motivation
Probabilistic graphical models are graphs in which
nodes represent random variables and edges rep-
resent conditional independence assumptions. They
provide a compact way to represent the joint prob-
ability distributions of a set of random variables.
In undirected graphical models, e.g., Markov net-
works (see (Darroch et al. 1980; Pearl 1988)), there
is a simple rule for determining independence: two
set of nodes A and B are conditionally independent
given C if removing C separates A and B. On the
other hand, directed graphical models, e.g. Bayesian
networks (see (Kiiveri, Speed, and Carlin 1984;
Wermuth and Lauritzen 1983; Pearl 1988)), which
consist of a directed acyclic graph (DAG) and a
corresponding set of conditional probability tables,
have a more complicated rule (d-separation) for de-
termining independence. More complex graphical
models include various types of graphs with edges
of several types (e.g., (Cox and Wermuth 1993;
1996; Richardson and Spirtes 2002; Peña 2014)), in-
cluding chain graphs (Lauritzen and Wermuth 1989;
Lauritzen 1996), for which different interpretations
have emerged (Andersson, Madigan, and Perlman
1996; Drton 2009).
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Probabilistic Graphical Models (PGMs) enjoy a
well-deserved popularity because they allow ex-
plicit representation of structural constraints in the
language of graphs and similar structures. From
the perspective of efficient belief update, factoriza-
tion of the joint probability distribution of random
variables corresponding to variables in the graph is
paramount, because it allows decomposition of the
calculation of the evidence or of the posterior prob-
ability (Lauritzen and Jensen 1997). The prolifera-
tion of different PGMs that allow factorizations of
different kinds leads us to consider a more general
graphical structure in this paper, namely directed
acyclic hypergraphs. Since there are many more
hypergraphs than DAGs, undirected graphs, chain
graphs, and, indeed, other graph-based networks,
Bayesian hypergraphs can model much finer fac-
torizations and thus are more computationally effi-
cient. See (Javidian et al. 2018) for examples of how
Bayesian hypergraphs can model graphically func-
tional dependencies that are hidden in probability ta-
bles when using BNs or CGs. We provide a causal
interpretation of Bayesian hypergraphs that extends
the causal interpretation of LWF chain graphs (Lau-
ritzen and Richardson 2002) by giving correspond-
ing formulas and a graphical criterion for interven-
tion, which operationalize the intuition that feed-
back processes in LWF chain graphs and Bayesian
hypergraphs models turn into causal processes when
variables in them are conditioned upon by inter-
vention. The addition of feedback processes and its
causal interpretation is a conceptual advance within
the three-level causal hierarchy (Pearl 2009).

Bayesian Hypergraphs: Definitions
Hypergraphs are generalizations of graphs such that
each edge is allowed to contain more than two ver-
tices. Formally, an (undirected) hypergraph is a pair
H = (V,E), where V = {v1, v2, · · · , vn} is the set of
vertices (or nodes) and E = {h1, h2, · · · , hm} is the
set of hyperedges where hi ⊆ V for all i ∈ [m]. If



|hi| = k for every i ∈ [m], then we say H is a k-
uniform (undirected) hypergraph. A directed hyper-
edge or hyperarc h is an ordered pair, h = (X,Y), of
(possibly empty) subsets of V where X ∩ Y = ∅; X
is the called the tail of h while Y is the head of h.
We write X = T (h) and Y = H(h). We say a directed
hyperedge h is fully directed if none of H(h) and
T (h) are empty. A directed hypergraph is a hyper-
graph such that all of the hyperedges are directed. A
(s, t)-uniform directed hypergraph is a directed hy-
pergraph such that the tail and head of every directed
edge have size s and t respectively. For example, any
DAG is a (1, 1)-uniform hypergraph (but not vice
versa). An undirected graph is a (0, 2)-uniform hy-
pergraph. Given a hypergraphH , we use V(H) and
E(H) to denote the the vertex set and edge set ofH
respectively.

We say two vertices u and v are co-head (or co-
tail) if there is a directed hyperedge h such that
{u, v} ⊂ H(h) ( or {u, v} ⊂ T (h) respectively). Given
another vertex u , v, we say u is a parent of v, de-
noted by u → v, if there is a directed hyperedge h
such that u ∈ T (h) and v ∈ H(h). If u and v are co-
head, then u is a neighbor of v. If u, v are neighbors,
we denote them by u−v. Given v ∈ V , we define par-
ent (pa(v)), neighbor (nb(v)), boundary (bd(v)), an-
cestor (an(v)), anterior (ant(v)), descendant (de(v)),
and non-descendant (nd(v)) for hypergraphs exactly
the same as for graphs (and therefore use the same
names). The same holds for the equivalent concepts
for τ ⊆ V . Note that it is possible that some vertex u
is both the parent and neighbor of v.

A partially directed cycle in H is a sequence
{v1, v2, . . . vk} satisfying that vi is either a neighbor
or a parent of vi+1 for all 1 ≤ i ≤ k and vi → vi+1 for
some 1 ≤ i ≤ k. Here vk+1 ≡ v1. We say a directed
hypergraph H is acyclic if H contains no partially
directed cycle. For ease of reference, we call a di-
rected acyclic hypergraph a DAH or a Bayesian hy-
pergraph structure (as defined in Definition 1). Note
that for any two vertices u, v in a directed acyclic
hypergraph H , u can not be both the parent and
neighbor of v otherwise we would have a partially
directed cycle.
Remark 1. DAHs are generalizations of undirected
graphs, DAGs and chain graphs. In particular an
undirected graph can be viewed as a DAH in which
every hyperedge is of the form (∅, {u, v}). A DAG
is a DAH in which every hyperedge is of the form
({u}, {v}). A chain graph is a DAH in which every
hyperedge is of the form (∅, {u, v}) or ({u}, {v}).

We define the chain components of H as the
equivalence classes under the equivalence relation
where two vertices v1, vt are equivalent if there ex-
ists a sequence of distinct vertices v1, v2, . . . , vt such
that vi and vi+1 are co-head for all i ∈ [t − 1]. The

chain components {τ : τ ∈ D} yields an unique nat-
ural partition of the vertex set V(H) =

⋃
τ∈D τ with

the following properties:
Proposition 1. Let H be a DAH and {τ : τ ∈ D}
be its chain components. Let G be a graph obtained
from H by contracting each element of {τ : τ ∈ D}
into a single vertex and creating a directed edge
from τi ∈ V(G) to τ j ∈ V(G) in G if and only if there
exists a hyperedge h ∈ E(H) such that T (h)∩ τi , ∅
and H(h) ∩ τ j , ∅. Then G is a DAG.

Proof. See (Javidian et al. 2018). �

Note that the DAG obtained in Proposition 1 is
unique and given a DAH H we call such G the
canonical DAG ofH .
Definition 1. A Bayesian hypergraph is a triple
(V,H , P) such that V is a set of random variables,
H is a DAH on the vertex set V and P is a multivari-
ate probability distribution on V such that the local
Markov property holds with respect to the DAH H ,
i.e., for any vertex v ∈ V(H),

v y nd(v)\cl(v) | bd(v). (1)

For a Bayesian hypergraph H whose underlying
DAH is a LWF DAH, we call H a LWF Bayesian
hypergraph.

Bayesian hypergraphs factorizations
The factorization of a probability measure P accord-
ing to a Bayesian hypergraph is similar to that of
a chain graph. Before we present the factorization
property, let us introduce some additional terminol-
ogy. Given a DAH H , we use Hu to denote the
undirected hypergraph obtained from H by replac-
ing each directed hyperedge h = (A, B) ofH into an
undirected hyperedge A ∪ B. Given a family of sets
F , define a partial order (F ,≤) on F such that for
two sets A, B ∈ F , A ≤ B if and only if A ⊆ B. Let
M(F ) denote the set of maximal elements in F , i.e.,
no element in M(F ) contains another element as
subset. When F is a set of directed hyperedges, we
abuse the notation to denote M(F ) = M(F u). Let
H be a directed acyclic hypergraph and {τ : τ ∈ D}
be its chain components. Assume that a probability
distribution P has a density f , with respect to some
product measure µ = ×α∈V µα onX = ×α∈VXα. Now
we say a probability measure P factorizes according
toH if it has density f such that

(i) f factorizes as in the directed acyclic case:

f (x) =
∏
τ∈D

f (xτ | xpa(τ)). (2)

(ii) For each τ ∈ D, define H∗τ to be the subhy-
pergraph of Hτ∪pa(τ) containing all edges h in
Hτ∪pa(τ) such that H(h) ⊆ τ.



f (xτ | xpa(τ)) =
∏

h∈M(H∗τ )

ψh(x). (3)

where ψh are non-negative functions depending

only on xh and
∫
Xτ

∏
h∈M(H∗τ )

ψh(x)µτ(dxτ) = 1.

Equivalently, we can also write f (xτ | xpa(τ)) as

f (xτ | xpa(τ)) = Z−1(xpa(τ))
∏

h∈M(H∗τ )

ψh(x), (4)

where Z−1(xpa(τ)) =

∫
Xτ

∏
h∈M(H∗τ )

ψh(x)µτ(dxτ).

Remark 2. One of the key advantages of Bayesian
hypergraphs is that they allow much finer factoriza-
tions of probability distributions compared to chain
graph models. We will illustrate with a simple exam-
ple in Figure 1.

a b

c d

a b

c d

Figure 1: (1) a chain graph G; (2) a Bayesian hyper-
graphH .

Note that in Figure 1 (1), the factorization ac-
cording to G is

f (x) = f (xa) f (xb) f (xcd | xab)
= f (xa) f (xb)ψabcd(x)

In Figure 1 (2), the factorization according toH is

f (x) = f (xa) f (xb) f (xcd | xab)
= f (xa) f (xb)ψabc(x)ψabd(x)ψcd(x)

Note that although G and H have the same global
Markov properties, the factorization according to
H is one step further compared to the factorization
according to G. Suppose each of the variables of
{a, b, c, d} can take k values. Then the factorization
according to G will require a conditional probabil-
ity table of size k4 while the factorization according
toH only needs a table of size Θ(k3) asymptotically.
Hence, a Bayesian hypergraph model allows much
finer factorizations and thus achieves higher mem-
ory efficiency.

Remark 3. We remark that the factorization for-
mula defined in (3) is in fact the most general pos-
sible in the sense that it allows all possible factor-
izations of a probability distribution admitted by a
DAH. In particular, given a Bayesian hypergraph

H and one of its chain components τ, the factor-
ization scheme in (3) allows a distinct function for
each maximal subset of τ ∪ paD(τ) that intersects
τ (paD is the parent of τ in the canonical DAG of
H). For each subset S of τ ∪ paD(τ) that does not
intersect τ, recall that the factorization in (3) can be
rewritten as follows:

f (xτ | xpa(τ)) =

∏
h∈M(H∗τ )

ψh(x)∫
Xτ

∏
h∈M(H∗τ )

ψh(x)µτ(dxτ)
.

Observe that ψS (x) is a function that does not de-
pend on values of variables in τ. Hence ψS (x) can be
factored out from the integral above and cancels out
with itself in f (xτ | xpa(τ)). Thus, the factorization
formula in (3) or (4) in fact allows distinct functions
for all possible maximal subsets of τ ∪ paD(τ).

Intervention in Bayesian hypergraphs
Formally, intervention in Bayesian hypergraphs can
be defined analogously to intervention in LWF chain
graphs (Lauritzen and Richardson 2002). In this sec-
tion, we give graphical procedures that are consis-
tent with the intervention formulas for chain graphs
(Equation (5), (6)) and for Bayesian hypergraphs
(Equation (7), (8)). Before we present the details,
we need some additional definitions and tools to de-
termine when factorizations according to two chain
graphs or DAHs are equivalent in the sense that they
could be written as products of the same type of
functions (functions that depend on same set of vari-
ables). We say two chain graphs G1,G2 admit the
same factorization decomposition if for every prob-
ability density f that factorizes according to G1, f
also factorizes according to G2, and vice versa. Sim-
ilarly, two DAHs H1,H2 admit the same factoriza-
tion decomposition if for every probability density
f that factorizes according to H1, f also factorizes
according toH2, and vice versa.

Factorization equivalence and intervention
in LWF chain graphs
In this subsection, we will give graphical procedures
to model intervention based on the formula intro-
duced in (Lauritzen and Richardson 2002). Let us
first give some background. In many statistical con-
text, we would like to modify the distribution of a
variable Y by intervening externally and forcing the
value of another variable X to be x. This is com-
monly referred as conditioning by intervention or
conditioning by action and denoted by Pr(y‖x) or
Pr(y | X ← x). Other expressions such as Pr(Yx =
y), Pman(x)(y), set(X = x), X = x̂ or do(X = x) have
also been used to denote intervention conditioning



(Splawa-Neyman 1990; Rubin 1974; Pearl 1993;
1995; 2009).

Let G be a chain graph with chain components
{τ : τ ∈ D}. Moreover, assume further that a sub-
set A of variables in V(G) are set such that for ev-
ery a ∈ A, xa = a0. Lauritzen and Richardson, in
(Lauritzen and Richardson 2002), generalized the
conditioning by intervention formula for DAGs and
gave the following formula for intervention in chain
graphs (where it is understood that the probability of
any configuration of variables inconsistent with the
intervention is zero). A probability density f factor-
izes according to G (with A intervened) if

f (x‖xA) =
∏
τ∈D

f (xτ\A | xpa(τ), xτ∩A). (5)

Moreover, for each τ ∈ D,

f (xτ\A | xpa(τ), xτ∩A)=Z−1(xpa(τ), xτ∩A)
∏
h∈C

ψh(x) (6)

where C is the set of maximal cliques in (Gτ∪pa(τ))m

and Z−1(xpa(τ), xτ∩A) =

∫
Xτ\A

∏
h∈C

ψh(x)µτ\A(dxτ\A).

Definition 2. G1 and G2 be two chain graphs. Given
a subset A1 ⊆ V(G1) and A2 ⊆ V(G2), we say
(G1, A1) and (G2, A2) are factorization-equivalent1
if they become the same chain graph after remov-
ing from Gi all vertices in Ai together with the edges
incident to vertices in Ai for i ∈ {1, 2}.

Typically, Ai in Definition 2 is a set of constant
variables in V(Gi) created by intervention.
Theorem 1. Let G1 and G2 be two chain graphs
defined on the same set of variables V. Moreover a
common set of variables A in V are set by interven-
tion such that for every a ∈ A, xa = a0. If (G1, A) and
(G2, A) are factorization-equivalent, then G1 and G2
admit the same factorization decomposition.

Proof. Let G0 be the chain graph obtained from G1
by removing all vertices in A and the edges incident
to A. It suffices to show that G1 and G2 both ad-
mit the same factorization decomposition as G0. Let
D1,D0 be the set of chain components of G1 and G0
respectively. Let τ ∈ D1 be an arbitrary chain com-
ponent of G1. By the factorization formula in (6), it
follows that

f (xτ\A | xpa(τ), xτ∩A) = Z−1(xpa(τ), xτ∩A)
∏
h∈C

ψh(x)

where C is the set of maximal cliques in (Gτ∪pa(τ))m

and Z−1(xpa(τ), xτ∩A) =

∫
Xτ\A

∏
h∈C

ψh(x)µτ\A(dxτ\A).

1This term was defined for a different purpose in (Stu-
dený 1992).

Notice that for any maximal clique h1 ∈ C such that
h1 ∩ A = ∅, h1 is also a clique in (G0[τ\A])m. For
h1 ∈ C with h1 ∩ A , ∅, there are two cases:

Case 1: (h1 ∩ τ)\A , ∅. In this case, observe that
h1\A is also a clique in (G0[τ\A])m, thus is con-
tained in some maximal clique h′ in (G0[τ\A])m.
Since all variables in A are pre-set as constants, it
follows that ψh1 (x) also appears in a factor in the
factorization of f according to G0.

Case 2: h1 ∩ τ ⊆ A. In this case, note that h1 ∩ τ is
disjoint with τ\A. Hence ψh1 (x) appears as a fac-
tor independently of xτ\A in both Z−1(xpa(τ), xτ∩A)
and
∏
h∈C

ψh(x), which cancels out with itself.

Thus it follows that every probability density f that
factorizes according to G1 also factorizes accord-
ing to G0. On the other hand, it is easy to see that
for every τ′ ∈ D0 and every maximal clique h′ in
(G0[τ′])m, h′ is contained in some maximal clique h
in (G1[τ])m for some τ ∈ D1. Hence we can con-
clude that G1 and G0 admit the same factorization
decomposition. The above argument also works for
G2 and G0. Thus, G1 and G2 admit the same factor-
ization decomposition. �

We now define a graphical procedure (call it redi-
rection procedure) that is consistent with the inter-
vention formula in Equation (5) and (6). Let G be
a chain graph. Given an intervened set of variables
A ⊆ V(G), let Ĝ be the chain graph obtained from
G by performing the following operation: for every
u ∈ A and every undirected edge e = {u,w} con-
taining u, replace e by a directed edge from u to
w; finally remove all the directed edges that point
to some vertex in A. By replacing the undirected
edge with a directed edge, we replace any feed-
back mechanisms that include a variable in A with
a causal mechanism. The intuition behind the pro-
cedure is the following. Since a variable that is set
by intervention cannot be modified, the symmet-
ric feedback relation is turned into an asymmetric
causal one. Similarly, we can justify this graphi-
cal procedure as equivalent to “striking out” some
equations in the Gibbs process on top of p. 338 of
(Lauritzen and Richardson 2002), as Lauritzen and
Richardson (Richardson 2018) did for Equation (18)
in (Lauritzen and Richardson 2002).

Theorem 2. Let G be a chain graph with a subset
of variables A ⊆ V(G) set by intervention such that
for every a ∈ A. xa = a0. Let Ĝ be obtained from G
by the redirection procedure. Then G and Ĝ admit
the same factorization decomposition.

Proof. It is not hard to see that removing from Ĝ and
G all vertices in A and all edges incident to A results



in the same chain graph. Hence by Theorem (1), G
and Ĝ admit the same factorization decomposition.

�

Example 1. Consider the chain graph G shown
in Figure 2. Let Ĝ be the graph obtained from G
through the redirection procedure described in this
subsection. Let G0 be the chain graph obtained from
G by deleting the vertex c0 and the edges incident to
c0. We will compare the factorization decomposition
according to the formula (5),(6) as well as the graph
structure Ĝ and G0.

a b

c
�

d e

a b

c0

�

d e

a b

dc0 e

Figure 2: (a) A chain graph G; (b) The graph Ĝ ob-
tained from G through the redirection procedure; (c)
The graph G0 obtained from G by deleting variables
in A.

By formulas (5) and (6) proposed in (Lauritzen
and Richardson 2002), when xc is set as c0 by inter-
vention,

f (x‖xc) = f (xa) f (xb) f (xde | xabc0 )

= f (xa) f (xb)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

.

Now consider the factorization according to Ĝ.
The chain components of Ĝ are {{a}, {b}, {c}, {d, e}}
with xc set to be c0. The factorization according to
Ĝ is as follows:

fĜ(x‖xc) = fĜ(xa) fĜ(xb) fĜ(xc) fĜ(xde | xabc0 )

= fĜ(xa) fĜ(xb) fĜ(xc)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

,

where f (xc) = 1 when xc = c0 and otherwise 0.
Hence G and Ĝ admit the same factorization.

Now consider the factorization according to G0.
The chain components of G0 are {{a}, {b}, {d, e}}. The
factorization according to G0 is as follows:

f0(x) = f0(xa) f0(xb) f0(xde | xab)

= f0(xa) f0(xb)
ψad(x)ψabde(x)∑
d,e ψad(x)ψabde(x)

,

Observe that f0(x) has the same form of decompo-
sition as f (x‖xc) since xc is set to be c0 in ψac0d(x)
(with the understanding that the probability of any
configuration of variables with xc , c0 is zero).
Hence we can conclude that G, Ĝ (with xc inter-
vened) and G0 admit the same factorization decom-
position.

Factorization equivalence and intervention
in Bayesian hypergraphs
Intervention in Bayesian hypergraphs can be mod-
eled analogously to the case of chain graphs. We use
the same notation as before. Let H be a DAH and
{τ : τ ∈ D} be its chain components. Moreover, as-
sume further that a subset A of variables in V(H) are
set such that for every a ∈ A, xa = a0. Then a prob-
ability density f factorizes according to H (with A
intervened) as follows: (where it is understood that
the probability of any configuration of variables in-
consistent with the intervention is zero):

f (x‖xA) =
∏
τ∈D

f (xτ\A | xpa(τ), xτ∩A). (7)

For each τ ∈ D, define H∗τ to be the subhyper-
graph ofHτ∪paD(τ) containing all edges h inHτ∪pa(τ)
such that H(h) ⊆ τ, then

f (xτ\A | xpa(τ), xτ∩A)=Z−1(xpa(τ), xτ∩A)
∏

h∈M(H∗τ )

ψh(x) (8)

where

Z−1(xpa(τ), xτ∩A) =

∫
Xτ\A

∏
h∈M(H∗τ )

ψh(x)µτ\A(dxτ\A)

and ψh are non-negative functions that depend only
on xh.

Definition 3. Let H1 and H2 be two Bayesian hy-
pergraphs. Given a subset of variables A1 ⊆ V(H1)
and A2 ⊆ V(H2), we say (H1, A1) and (H2, A2) are
factorization-equivalent if performing the following
operations to H1 and H2 results in the same di-
rected acyclic hypergraph:

(i) Deleting all hyperedges with empty head, i.e., hy-
peredges of the form (S , ∅).

(ii) Deleting every hyperedge that is contained in
some other hyperedge, i.e., delete h if there is
another h′ such that T (h) ⊆ T (h′) and H(h) ⊆
H(h′).

(iii) Shrinking all hyperedges of Hi containing ver-
tices in Ai, i.e. replace every hyperedge h of Hi
by h′ = (T (h)\Ai,H(h)\Ai) for i ∈ {1, 2}.

Typically, Ai in Definition 3 is a set of constant
variables in V created by intervention.

Theorem 3. Let H1 and H2 be two DAHs defined
on the same set of variables V. Moreover, a common
set of variables A in V are set by intervention such
that for every a ∈ A, Xa = a0. If (H1, A) and (H2, A)
are factorization-equivalent, thenH1 andH2 admit
the same factorization decomposition.



Proof. Similar to the proof in Theorem 1, letH0 be
the DAH obtained from H1 (or H2) by performing
the operations above repeatedly. Let D1 and D0 be
the set of chain components of H1 and H0 respec-
tively. First, note that performing the operation (i)
does not affect the factorization since hyperedges of
the form h = (S , ∅) never appear in the factorization
decomposition due to the fact that H(h) ∩ τ = ∅ for
every τ ∈ D1. Secondly, (ii) does not change the fac-
torization decomposition too since if one hyperedge
h is contained in another hyperedge h′ as defined,
then ψh(x) can be simply absorbed into ψh′ (x) by re-
placing ψh′ (x) with ψh′ (x) · ψh(x).

Now let τ ∈ D1 be an arbitrary chain compo-
nent of H1 and h1 ∈ H1[τ]∗, i.e., the set of hy-
peredges in H1 whose head intersects τ. Suppose
that τ is separated into several chain components
τ′1, τ

′
2, · · · , τ

′
t in H0 because of the shrinking oper-

ation. If h1 ∩ A = ∅, then h1 is also a hyperedge in
H0[τ\A]∗. If h1 ∩ A , ∅, there are two cases:

Case 1: H(h1) ⊆ A. Then since variables in A are
constants, it follows that in Equation (8), ψh1 (x)
does not depend on variables in τ\A. Hence ψh(x)
appears as factors independent of variables in τ\A
in both Z−1(xpa(τ), xτ∩A) and

∏
h∈M(H∗τ )

ψh(x), thus

cancels out with itself. Note that, h1 does not
exist in H0 too since h1 becomes a hyperedge
with empty head after being shrinked and thus is
deleted in Operation (i).

Case 2: H(h1)\A , ∅. In this case, H(h1)\A must
be entirely contained in one of {τ′1, · · · , τ

′
t} . With-

out loss of generality, say H(h1)\A ⊆ τ′1 in
H0. Then note that h1\A must be contained in
some maximal hyperedge h′ in E(H0) such that
H(h′) ∩ τ′1 , ∅. Moreover, recall that variables in
A are constants. Hence ψh1 must appear in some
factor in the factorization of f according toH0.

Thus it follows that every probability density f that
factorizes according to H1 also factorizes accord-
ing to H0. On the other hand, it is not hard to see
that for every τ′ ∈ D0 and every hyperedge h′ in
(H0[τ′])∗, h′ is contained in some maximal hyper-
edge h in (H1[τ])∗ for some τ ∈ D1. Hence we can
conclude that H1 and H0 admit the same factoriza-
tion decomposition. The above argument also works
for H2 and H0. Thus, H1 and H2 admit the same
factorization decomposition. �

We now present a graphical procedure (call it
redirection procedure) for modeling intervention in
Bayesian hypergraph. LetH be a DAH and {τ : τ ∈
D} be its chain components. Suppose a set of vari-
ables xA is set by intervention. We then modify H
as follows: for each hyperedge h ∈ E(H) such as

S = H(h) ∩ A , ∅, replace the hyperedge h by
h′ = (T (h) ∪ S ,H(h)\S ). If a hyperedge has empty
set as its head, delete that hyperedge. Call the result-
ing hypergraph ĤA. We will show that the factoriza-
tion according to ĤA is consistent with Equation (8).
Theorem 4. Let H be a Bayesian hypergraph and
{τ : τ ∈ D} be its chain components. Given an
intervened set of variables xA, let ĤA be the DAH
obtained from H by replacing each hyperedge h ∈
E(H) satisfying S = H(h)∩A , ∅ by the hyperedge
h′ = (T (h) ∪ S ,H(h)\S ) and removing hyperedges
with empty head. Then H and Ĥ admit the same
factorization decomposition.

Proof. This is a corollary of Theorem (3) since per-
forming the operations (i)(ii)(iii) in the definition of
factorization-equivalence of DAH to H and Ĥ re-
sults in the same DAH. �

Example 2. Let G be a chain graph as shown in
Figure 3(a) and H be the canonical LWF Bayesian
hypergraph of G as shown in Figure 3(b), con-
structed based on the procedure in (Javidian et al.
2018, Section 2.4). H has two directed hyperedges
({a}, {c, d}) and ({a, b}, {d, e}). Applying the redirec-
tion procedure for intervention in Bayesian hyper-
graphs leads to the Bayesian hypergraph Ĥ in Fig-
ure 3(c). We show that using equations (5) and (6)
for Figure 3(a) leads to the same result as if one
uses the factorization formula for the Bayesian hy-
pergraph in Figure 3(c). First, we compute f (x||xc)

a b

c
�

d e

a b

c
�

d e

a bc = c0

�

d e

Figure 3: (a) A chain graph G; (b) the canonical
LWF DAH H of G; (c) the resulting hypergraph
Ĥ after performing the graphical procedure on H
when the variable c is intervened.

for chain graph in Figure 3(a). Based on equation
(5) we have:

f (x‖xc) = f (xa) f (xb) f (xde | xabc0 ),

as the effect of the atomic intervention do(Xc = c0).
Then, using equation (6) gives:

f (x||xc) = f (xa) f (xb)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

. (9)

Now, we compute f (x) for Bayesian hypergraph in
Figure 3(c). Using equation (2) gives:

f (x‖xc) = f (xa) f (xb) f (xde | xabc0 ).



Applying formula (3) gives:

f (x||xc)= f (xa) f (xb) f (xc)
ψac0d(x)ψabde(x)∑
d,e ψac0d(x)ψabde(x)

. (10)

Note that f (xc) = 1, when xc = c0, otherwise
f (xc) = 0. As a result, the right side of equations
(9) and (10) are the same.

Figure 4: Commutative diagram of factorization
equivalence

Remark 4. Figure 4 summarizes our results. Given
a chain graph G and its canonical LWF DAH H ,
Theorem 4 in (Javidian et al. 2018) shows that G
andH admit the same factorization decomposition.
Suppose a set of variables A is set by intervention.
Theorem 1 and 2 show that the the DAH obtained
from G by the redirection procedure or deleting the
variables in A admit the same factorization decom-
position, which is also consistent with the interven-
tion formula introduced in (Lauritzen and Richard-
son 2002). Similarly, Theorem 3 and 4 show that the
DAH obtained fromH by the redirection procedure
or shrinking the variables in A admit the same fac-
torization decomposition, which is consistent with a
hypergraph analogue of the formula in (Lauritzen
and Richardson 2002).
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