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Abstract
Unmeasured confounding is a major hurdle for causal infer-
ence from observational data. Confounders—the variables that
affect both the causes and the outcome—induce spurious non-
causal correlations between the two. Wang and Blei (2018)
lower this hurdle with “the blessings ofmultiple causes,” where
the correlation structure of multiple causes provides indirect
evidence for unmeasured confounding. They leverage these
blessings with an algorithm, called the deconfounder, that uses
probabilistic factor models to correct for the confounders. In
this paper, we take a causal graphical view of the deconfounder.
In a graph that encodes shared confounding, we show how the
multiplicity of causes can help identify intervention distribu-
tions. We then justify the deconfounder, showing that it makes
valid inferences of the intervention. Finally, we expand the
class of graphs, and its theory, to those that include other con-
founders and selection variables. Our results expand the theory
in Wang and Blei (2018), justify the deconfounder for causal
graphs, and extend the settings where it can be used.

Keywords: Causal inference, probabilistic models, struc-
tural causal models

Introduction
Unmeasured confounding is the major hurdle for causal in-
ference from observational data. Confounders are variables
that affect both the causes and the outcome. When measured,
we can account for them with adjustments. But when unmea-
sured, they open back-door paths that bias the causal inference;
adjustments are not possible.
Consider the following causal problem. How does a per-

son’s diet affect her body fat percentage? One confounder
is lifestyle: someone with a healthy lifestyle will eat healthy
foods such as boiled broccoli; but she will also exercise fre-
quently, which lowers her body fat. Thus when lifestyle is
unmeasured, the composition of diet will be correlated with
body fat, regardless of its true causal effect. Compounding the
difficulty, accurate measurements of lifestyle (the confounder)
are difficult to obtain, e.g., requiring expensive real-time track-
ing of activities. Lifestyle is necessarily an unmeasured con-
founder.

To lower the hurdle of unmeasured confounding, Wang and
Blei (2018) propose to dwell on multiple causes. They focus
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on settings where multiple causes affect a single outcome.
They found that the correlation structure of the causes can
reveal unmeasured multi-cause confounders, those that affect
multiple causes and the outcome. They estimate those con-
founders with probabilistic factor models and then use them
downstream in a causal inference. The correlation structure
of the causes are “the blessings of multiple causes.”
The example fits into this setting. Each type of food—

broccoli, burgers, granola bars, pizza, and so on—is a poten-
tial cause of body fat. Further, each person’s lifestyle affects
multiple causes, i.e., their consumption of multiple types of
food. People with a healthy lifestyle eat broccoli and gra-
nola more than burgers and pizza; people with an unhealthy
lifestyle eat pizza and burgers more than they eat broccoli.
Thus, using observed data, patterns of lifestyle might be re-
vealed in the dependency structure of the foods. Then, by
analyzing which foods each person eats, we can infer some-
thing about their lifestyle, something about the unmeasured
confounder.
Leveraging this idea, Wang and Blei (2018) develop the

“deconfounder” algorithm for causal inference. The decon-
founder constructs a random variable—called the “substitute
confounder”—that renders the causes conditionally indepen-
dent; it then uses the substitute confounder to adjust for con-
founding bias. In the Rubin causal model, they prove the
deconfounder leads to unbiased estimates of potential out-
comes under the single ignorability assumption: each cause is
conditionally independent of the potential outcome given the
observed confounders. This assumption is weaker than the
classical ignorability assumption prevalent in the potential
outcomes literature.
Here we take a causal graphical view of the blessings of

multiple causes. What causal quantities can be identified?
How does single ignorability translate to assumptions on
causal graphs? How does the multiplicity of the causes resolve
causal identification? Does the deconfounder algorithm lead
to valid causal estimates on causal graphs? These are the
questions we study in this paper.

Consider multiple causal inference with shared confound-
ing. This setting is in the causal graph of Figure 1b, where
an unmeasured confounder U (lifestyle) affects multiple
causes {A1, . . . , Am} (food choices) and an outcomeY (body
fat). Further consider a subset of causes C. We first prove
that, under suitable conditions, the intervention distribution



p(y |do(aC)) is identifiable; it can be written in terms of the
observational distribution. We then revisit the deconfounder.
We show that it produces correct estimates of p(y |do(aC));
this result justifies the deconfounder on causal graphs.

Finally we generalize the result to the larger class of graphs
in Figure 2b. This graph contains shared confounding, mea-
sured single-cause confounders (that only affect one cause),
selection on the unobservables, and other structures. We prove
identifiability in this larger class as well as the correctness of
the deconfounder.
Taken together, these results expand the theory in Wang

and Blei (2018), justify the deconfounder for causal graphs,
and extend the settings where it can be used.

Related work. This work uses and extends causal identifi-
cation with proxy variables (Kuroki and Pearl, 2014; Miao
et al., 2018). While these works focus on a single cause and a
single outcome, we analyze multiple causality. We leverage
multiple causes to establish causal identification.

In more detail, proxy variables are the observable children
of unmeasured confounders. Our key observation is that, in
multiple causal inference, some causes can serve as proxies
for causal identification of others. This observation helps
identify the intervention distributions of subsets of causes;
for example, the intervention distributions of each individual
cause is identifiable. Further, unlike previous work in proxy
variables, we do not need to find two independent proxies
for the unobserved confounder; some causes themselves can
serve as proxies for identifying the effect of the other causes.
Finally, this paper connects to the growing literature on

multiple causal inference (Tran and Blei, 2017; Wang and
Blei, 2018; Ranganath and Perotte, 2018; Heckerman, 2018).
While most of these works focus on developing algorithms,
we focus on theoretical aspects of the problem, expanding the
ideas ofWang and Blei (2018) to identification and estimation
in causal graphs. We note that D’Amour (2019) provides
examples in multiple causal inference where the intervention
distribution is not identifiable. The results in this work do
not contradict those. Rather, we focus on the intervention
distributions of subsets of the causes; D’Amour (2019) focuses
on the intervention distributions of all the causes.

Multiple causes with shared confounding
Consider a causal inference problem where multiple causes
of interest affect a single outcome; it is a multiple causal
inference. Start with a simple causal graph (Figure 1b) where
all the causes share the same unmeasured confounding. We
will establish causal identification in this setting and prove the
validity of causal estimation with the deconfounder algorithm.
We will extend these results to more general causal graphs.

Multiple causal inference
Multiple causal inference focuses on a setting where multiple
causes of interest affect a single outcome. The goal is to study
the distribution of the outcome if we intervene on the causes.
Multiple causal inference deviates from classical causal in-
ference where a causal graph is built for a single cause and a
single outcome.

Think of the meal/body-fat example in the introduction. It
is a multiple causal inference: the three causes are the amount

of pizza, burger, and broccoli a person eats everyday; the
outcome is the person’s body fat. Figure 1a illustrates the
causal graph of this multiple causal inference. Figure 1b gives
another example of multiple causal inference: we have m
causes A1, . . . , Am that all affect the outcome Y .
The goal of multiple causal inference is to estimate the

intervention distributions

P (y |do(aC))
∆
= P (y |do(AC = aC)).

They describe the distribution of the outcome Y if we in-
tervene on the set of causes AC = {Ai : i ∈ C}; the set
C ⊆ {1, . . . ,m} is the indices of the causes we intervene on.

Causal identification
We start with studying causal identification in multiple causal
inference. We focus on the setting of shared unmeasured con-
founding:m causes A1, . . . , Am share the same unobserved
confounder U as in Figure 1b.

What intervention distributions can be identified with mul-
tiple causes under shared unmeasured confounding? In this
section, we prove that the intervention distributions of subsets
of the causes P (y |do(aC)), C ⊂ {1, . . . ,m} are identifiable
under suitable conditions.
An intervention distribution is identifiable if it can be

written as a function of the observed data distribution (e.g.
P (y, a1, . . . , am) in Figure 1b) (Pearl, 2009). Identifiability
ensures that an intervention distribution is estimable from the
observed data.
The starting point of causal identification with multiple

causes is the proxy variable approach; it focuses on causal
identification with a single cause (Kuroki and Pearl, 2014;
Miao et al., 2018). Consider the causal graph (Figure 1c)
with a cause A1, an outcome Y , and an unobserved con-
founderU . The goal is to estimate the intervention distribution
P (y |do(a1)). A proxy is an observable child of the unob-
served confounder, e.g. X; a null proxy is a proxy that does
not affect the outcome, e.g. N . The intervention distribution
P (y |do(a1)) is identifiable if (1) we observe two proxies of
the unobserved confounder U and (2) one of the proxies is a
null proxy (Miao et al., 2018). In particular, P (y |do(a1)) is
identifiable with the proxies N and X in Figure 1c.

Leveraging the proxy variable approach, we identify inter-
vention distributions for multiple causes with shared unob-
served confounding. The idea is to use some causes as proxies
to identify the intervention distributions of the other causes.
With multiple causes, we do not need to seek external proxy
variables in the data collection process; the causes themselves
can serve as proxies. Nor do we need to find a single variable
as the null proxy that does not affect the outcome (like N in
Figure 1c). We only need to find some function of the causes
that does not affect the outcome. For example, the sum of
two causes can be a null proxy if the sum does not affect
the outcome. This idea liberates us from collecting external
data about the proxy variables in observational studies. With
multiple causes, we can work solely with the data about the
causes and the outcome. This is the “blessings of multiple
causes” from the causal graphical view.
Below we formally state the identification result for mul-

tiple causes. Assume the causal graph in Figure 1b with m
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Figure 1: (a) Causal graph of the meal/body-fat example. (b) Multiple causes with shared confounding. (c) Proxy variables for an
unobserved confounder. (Only the shaded nodes are observed.)

causes A1, . . . , Am, an outcome Y , and a shared unobserved
confounder U . The goal is to identify the intervention distri-
bution of a strict subset of the causes P (y |do(aC)) where
AC = {Ai : i ∈ C} and C ⊂ {1, . . . ,m}.
We partition them causes {A1, . . . , Am} into three sets:

AC is the set of causes we intervene on; AX is the set of
causes we use as proxy; AN is the set of causes such that
f(AN ) can serve as a null proxy. The latter two mimics the
proxyX and the null proxyN in the proxy variable approach.
The sets AC , AX and AN must be non-empty.
Assumption 1. There exists some function f and a set ∅ 6=
N ⊂ {1, . . . ,m}\C such that
1. The outcome Y does not depend on f(AN ):

f(AN ) ⊥ Y |U,AC , AX , (1)

where X = {1, . . . ,m}\(C ∪ N ) 6= ∅.
2. The conditional distribution P (u | aC , f(aN )) is com-

plete1 in f(aN ) for almost all aC .
3. The conditional distribution P (f(aN ) | aC , aX ) is com-

plete in aX for almost all aC .
Assumption 1.1 ensures that a set of causesAN exists such

that some function of it—f(AN )—can serve as a null proxy
(Equation (1)). Roughly, it requires f(AN ) does not affect the
outcome. Such an f often exists when the number of causes
is large (Dasgupta and Gupta, 2003).

Assumption 1.2 and Assumption 1.3 are two completeness
conditions on the true causal model; they are required by the
proxy variable approach (e.g. Conditions 2 and 3 of Miao
et al. (2018)). Roughly, they require that the distributions of
U corresponding to different values of f(AN ) are distinct;
the distributions of f(AN ) relative to differentAX values are
also distinct.

Many common statistical models satisfy the completeness
condition. Examples include exponential families (Newey
and Powell, 2003), location-scale families (Hu and Shiu,
2018), and nonparametric regression models (Darolles et al.,

1Definition of “complete”: The conditional distribution
P (u | aC , f(aN )) is complete in f(aN ) for almost all aC means for
any square-integrable function g(·) and almost all aC ,∫

g(u, aC)P (u | aC , f(aN )) du = 0 for almost all aN

if and only if g(u, aC) = 0 for almost all u.

2011). Completeness is a common assumption posited
in nonparametric causal identification (Miao et al., 2018;
D’Haultfoeuille, 2011); it is often used to guarantee the exis-
tence and the uniqueness of solutions to integral equations.
We refer the readers to Chen et al. (2014) for a detailed dis-
cussion of completeness.

Under Assumption 1, we can identify the intervention dis-
tribution of the subset of the causes AC .
Theorem 1. (Causal identification under shared confound-
ing) Assume the causal graph Figure 1b. Under Assumption 1,
the intervention distribution of the causes AC is identifiable:

P (y |do(aC)) =
∫
h(y, aC , aX )P (aX ) daX (2)

for any solution h to the integral equation

P (y | aC , f(aN )) =∫
h(y, aC , aX )P (aX | aC , f(aN )) daX . (3)

Moreover, the solution to Equation (3) always exists under
weak regularity conditions in the appendix.

Proof sketch. The proof of Theorem 1 relies on the partition
of them causes:AC as the causes,AX as the proxies, andAN
such that f(AN ) can be a null proxy.We then follow the proxy
variable strategy to identify the intervention distributions of
AC using AX as a proxy and f(AN ) as a null proxy. We
no longer have a null proxy like N as in Figure 1c; all the
m causes can affect the outcome. However, Assumption 1.1
allows f(AN ) to play the role of a null proxy. The full proof
is in the appendix.

Theorem 1 identifies the intervention distributions of sub-
sets of the causes AC; it writes P (y |do(aC)) as a function
of the observed data distribution P (y, aC , aX , aN ). In par-
ticular, it lets us identify the intervention distributions of
individual causes P (y |do(ai)), i = 1, . . . ,m. By using the
causes themselves as proxies, Theorem 1 exemplifies how the
multiplicity of the causes enables causal identification under
shared unmeasured confounding.

Causal estimation with the deconfounder
Theorem 1 guarantees that the intervention distribution
P (y |do(aC)) is estimable from the observed data. However,



it involves solving an integral equation (Equation (3)). This
integral equation is hard to solve except in the simplest linear
Gaussian case (Carrasco et al., 2007). How can we estimate
P (y |do(aC)) in practice?
In this section, we revisit the deconfounder algorithm de-

veloped in Wang and Blei (2018). We show that the de-
confounder correctly estimates the intervention distribution
P (y |do(aC)); it implicitly solves the integral equation in
Equation (3) by modeling the data. These results justify the
deconfounder from a causal graphical perspective.
The deconfounder algorithm. Given the causes

A1, . . . , Am and the outcome Y , the deconfounder proceeds
in three steps:
1. Construct a substitute confounder. Based only on the

(observed) causes A1, . . . , Am, it first constructs a ran-
dom variable Ẑ such that all the causes are conditionally
independent:

P̂ (a1, . . . , am, ẑ) = P̂ (ẑ)

m∏
j=1

P̂ (aj | ẑ), (4)

where P̂ (·) is consistent with the observed data

P (a1, . . . , am) =

∫
P̂ (a1, . . . , am, ẑ) dẑ. (5)

The random variable Ẑ is called a substitute confounder;
it does not necessarily coincide with the true confounder
U . It can be constructed using probabilistic factor models
(e.g. Mnih and Salakhutdinov (2008)).

2. Fit an outcome model. It obtains an estimate of how the
outcome depends on the causes and the substitute con-
founder Ẑ,

P̂ (y | a1, . . . , am, ẑ).

The outcomemodel is fit to be consistent with the observed
data:

P (y, a1, . . . , am)

=

∫
P̂ (y | a1, . . . , am, ẑ)P̂ (a1, . . . , am, ẑ) dẑ. (6)

Together with the first step, the deconfounder gives the
joint distribution

P̂ (y, a1, . . . , am, ẑ).

Wenote that many possible P̂ (·)’s satisfy the deconfounder
requirement (Equations (4) to (6)). The deconfounder out-
puts one such P̂ . (We will show that any such P̂ will lead
to the correct causal estimate under suitable conditions.)

3. Estimate the intervention distribution. It estimates the
intervention distribution P (y |do(aC)) by integrating out
the causes that are not intervened on:

P̂ (y |do(aC))
∆
=

∫
P̂ (y | a1, . . . , am, ẑ)

× P̂ (a{1,...,m}\C , ẑ) dẑ da{1,...,m}\C . (7)

The correctness of the deconfounder. We next show
that the deconfounder estimate P̂ (y |do(aC)) is correct for
P (y |do(aC)).
Assumption 2. The deconfounder outputs an estimate
P̂ (y, a1, . . . , am, ẑ) that satisfies two conditions:
1. It is consistent with Assumption 1.1:

P̂ (y | aC , aX , f(aN ), ẑ) = P̂ (y | aC , aX , ẑ). (8)

2. The conditional distribution P̂ (ẑ | aC , aX ) is complete in
aX for almost all aC .

Both sides of Equation (8) and P̂ (ẑ | aC , aX ) are computed
from the deconfounder output P̂ (y, a1, . . . , am, ẑ).

Assumption 2.1—together with Assumption 1.1—roughly
require that there exist some function f and a subset of
the causes AN such that f(AN ) does not affect the out-
come in both the deconfounder outcome model and the true
causal model. We emphasize that the deconfounder does
not require the specification of f and AN . However, we can
still verify this assumption given the deconfounder estimate
P̂ (y, a1, . . . , am, ẑ): we form candidates of f(AN ) that sat-
isfies Assumption 2.1; then we check if f(AN ) satisfies As-
sumption 1.1. If one such f(AN ) exists, both assumptions
are satisfied.
Assumption 2.2 requires that the distributions of Ẑ corre-

sponding to different values of AX are distinct. It is a similar
completeness condition as in Assumption 1.

Now we state the correctness result of the deconfounder.
Theorem 2. (Correctness of the deconfounder under shared
confounding) Assume the causal graph Figure 1b. Under As-
sumption 1, Assumption 2 and weak regularity conditions, the
deconfounder provides correct estimates of the intervention
distribution:

P̂ (y |do(aC)) = P (y |do(aC)), (9)
where the left hand side is computed from Equation (7).

Proof sketch. The proof of Theorem 2 relies on a key ob-
servation: the deconfounder implicitly solves the integral
equation (Equation (3)) by modeling the observed data with
P̂ (y, a1, . . . , am, ẑ). Assumption 2.2 guarantees that the de-
confounder estimate can be written as

P̂ (y | aC , ẑ) =
∫
ĥ(y, aC , aX )P̂ (aX | ẑ) daX (10)

under weak regularity conditions; this function ĥ(y, aC , aX )
also solves the integral equation (Equation (3)). The de-
confounder uses this solution to form an estimate of
P (y |do(aC)); this estimate is correct because of Theorem 1.
The full proof is in the appendix.

Theorem 2 justifies the deconfounder for multiple causal
inference under shared confounding (Figure 1b). It proves that
the deconfounder correctly estimates the intervention distri-
butions when they are identifiable. This result complements
Theorem 5.3 of Wang and Blei (2018); it focuses on estimat-
ing the intervention distributions of subsets of the causes.
In contrast, Theorem 5.3 of Wang and Blei (2018) focuses
on estimating the intervention distributions of all the causes.
Their identification result relies on stronger assumptions.



Multiple causes on general causal graphs
We have discussed causal identification and estimation when
multiple causes share the same unobserved confounder. In
this section, we extend these discussions to more general
causal graphs. We will describe these general causal graphs
(Figure 2b). Under suitable conditions, we reduce them to
one with shared confounding (Figure 2c). We then establish
causal identification and estimate intervention distributions
using results in the previous section.

General causal graphs
We focus on the class of general causal graphs2 in Figure 2b.
As in the shared confounding graph (Figure 1b), it has m
causes A1, . . . , Am and an outcome Y ; the goal is to esti-
mate P (y |do(aC)), where AC ⊆ {A1, . . . , Am} is the set
of the causes we intervene on. Apart from the causes and
the outcome, the causal graph has a few other components.
(Figure 2a contains a glossary of terms.)

Confounders U . Confounders are parents of both the
causes and the outcome; they can be unobserved. For example,
theU variables (U sng

i andUmlt
i ) in Figure 2b are confounders;

they have arrows into the outcome Y and at least one of the
causes Ai. We differentiate between single-cause and multi-
cause confounders. Single-cause confounders affect only one
cause, e.g. U sng

i ; multi-cause confounders affect two or more
causes, e.g. Umlt

i .
Null confounders W . Null confounders are parents of

the causes but not the outcome; they can be unobserved. In
Figure 2b, theW variables are null confounders; they have
arrows into at least one of the causes Ai but no arrow into the
outcome Y . As with the confounders, we also differentiate
between single-cause null confounders (e.g.W sng

i ) and multi-
cause null confounder (e.g.Wmlt

i ).
Covariates V . Covariates are parents of the outcome but

not the causes, e.g., the V variables in Figure 2b. They do not
affect any of them causes; they can be unobserved.
Selection operator S. Following Bareinboim and Pearl

(2012), we introduce a selection operator S into the causal
graph, S ∈ {0, 1}. S = 1 indicates an individual being
selected; otherwise, S = 0. We only observe the outcome of
those individuals with s = 1. Figure 2b allows selection to
occur on the confounders (e.g. U sng

i , Umlt
i ).

The four sets of variables—confounder, null confounder,
covariates, and the selection operator—compose the more
general causal graphs with multiple causes. We study identi-
fication and estimation on these causal graphs.

Causal identification
We first extend the causal identification result with shared
confounding (Theorem 1) to the more general causal graphs.
The idea is to first reduce the general causal graph (Figure 2b)
to the one with shared confounding (Figure 2c). After the
reduction, we leverage Theorem 1 to establish causal identifi-
cation on the reduced graph (Figure 2c). These results finally
lead to causal identification on the original general causal
graph (Figure 2b).

2There exist causal graphs that do not fall in this class (Figure 2b);
we leave them for future work.

Reduction to shared confounding. We first reduce the
general causal graph (Figure 2b) to one with shared con-
founding (Figure 2c). In graphs with shared confounding (e.g.
Figure 1b and Figure 2c), all the causes share an unobserved
confounder, which renders the causes conditionally indepen-
dent. Assume the general graph; we will show that we can
equivalently use the reduced graph to identify the intervention
distributions P (y |do(aC)).
The key to this reduction is the following observation: a

shared confounder Z must “capture”3 all multi-cause con-
founders and multi-cause null confounders because Z renders
all the causes conditionally independent.
Consider a random variable Z that renders all the causes

A1, . . . , Am conditionally independent as in Figure 2c. We
claim that Z must capture all the multi-cause confounders
and null confounders {Umlt,Wmlt}. We can prove this claim
by contradiction. Imagine there exists some multi-cause con-
founder Umlt

i that is not captured by Z. This multi-cause
confounder Umlt

i will induce dependence among the causes
because Umlt

i affects two or more causes by definition. Due to
this dependence, them causes could not have been condition-
ally independent given Z because Z does not capture Umlt

i . It
contradicts the fact that Z renders all the causes conditionally
independent. This argument shares the same spirit with the
substitute confounder argument in Wang and Blei (2018).
Following this discussion, we can reduce all the multi-

cause confounders and null confounders {Umlt,Wmlt} into a
shared confounderZ; {Umlt,Wmlt} constitute an admissible
set. Therefore, assuming the general causal graph (Figure 2b),
we can equivalently identify the intervention distributions
P (y |do(aC)) using a reduced causal graph (Figure 2c); it
involves only the single-cause confounders U sng and a shared
confounder Z. This reduction allows us to generalize the
identification result under shared confounding (Theorem 1)
to the more general causal graphs (Figure 2b).

We now formally state the validity of this reduction step.
Lemma 3. (Validity of reduction) Assume the causal graph
in Figure 2b. Adjusting for the multi-cause confounders and
null confounders on the general causal graph Figure 2b is
equivalent to adjusting for the shared confounder in Figure 2c:

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1)

= P (y |usng, z, a1, . . . , am, s = 1). (11)

Proof sketch. The proof uses a measure-theoretic argument
to characterize the information contained in the Z variable in
Figure 2c. The full proof is in the appendix.

Causal identification on the reduced causal graph (Fig-
ure 2c). We have just reduced general causal graphs (Fig-
ure 2b) to one with shared confounding (Figure 2c). This
reduction allows us to establish causal identification on gen-
eral causal graphs. We extend Theorem 1 from Figure 1b to
Figure 2c. With the reduction step (Lemma 3), it leads to
causal identification on general causal graphs.

3The random variable A “captures” the random variable B if A
contains all the information of B. Technically, it means the sigma
algebra of the former is large than or equal to that of the latter:
σ(B) ⊂ σ(A).



Name Definition E.g.

Confounder Parents of ≥ 1
cau. & ≥ 1 out.
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U sng
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Wmlt
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V
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Figure 2: (a) Glossary of terms. (“cau.” = causes; “out.” = outcome.) (b) The class of more general causal graphs. (S is the
selection operator.) (c) The reduced causal graph with shared confounding. (The shaded nodes are observed.)

How can we identify the intervention distributions
P (y |do(aC)) on the reduced graph (Figure 2c)? Figure 2c
has a confounder Z that is shared across all causes. This
structure is similar to the unobserved shared confounding Fig-
ure 1b. In addition to the shared confounder Z, the reduced
graph involves single-cause confounders U sng and the selec-
tion operator S. We posit two assumptions on them to enable
causal identification.
Assumption 3. The causal graph Figure 2c satisfies the fol-
lowing conditions:
1. All single-cause confounders U sng

i ’s are observed.
2. The selection operator S satisfies

S ⊥ (A, Y ) |Z,U sng. (12)
3. We observe the non-selection-biased distribution

P (a1, . . . , am, u
sng)

and the selection-biased distribution
P (y, usng, a1, . . . , am | s = 1).

Assumption 3.1 requires that the confounders that affect
the outcome and only one of the causes must be observed. It
allows us to adjust for confounding due to these single-cause
confounders. Assumption 3.2 roughly requires that selection
can only occur on the confounders. Assumption 3.3 requires
access to the non-selection-biased distribution of the causes
and single-cause-confounders. It aligns with common condi-
tions required by recovery under selection bias (e.g., Theorem
2 of Bareinboim et al. (2014)).
We next establish causal identification on the reduced

causal graph Figure 2c. We additionally make Assumption 4;
it is a variant of Assumption 1 but involves single-cause con-
founders and the selection operator.
Assumption 4. There exists some function f and a set ∅ 6=
N ⊂ {1, . . . ,m}\C such that
1. The outcome Y does not causally depend on f(AN ):

f(AN ) ⊥ Y |Z,AC , AX , U
sng, S = 1 (13)

where X = {1, . . . ,m}\(C ∪ N ) 6= ∅.
2. The conditional P (z | aC , f(aN ), usng

C , s = 1) is complete
in f(aN ) for almost all aC and usng

C , where U sng
C is the

single-cause confounders affecting AC .

3. The conditional P (f(aN ) | aC , aX , usng
C , s = 1) is com-

plete in aX for almost all aC and usng
C .

Under Assumption 3 and Assumption 4, we can identify
the intervention distributions P (y |do(aC)).
Lemma 4. Assume the causal graph Figure 2c. Under As-
sumption 3 and Assumption 4, the intervention distribution
of the causes AC is identifiable:

P (y |do(aC)) (14)

=

∫ ∫
h(y, aC , aX , u

sng
C )P (aX )P (usng

C ) daX dusng
C

for any solution h to the integral equation

P (y | aC , f(aN ), usng
C , s = 1) (15)

=

∫
h(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX ,

(16)

where U sng
C is the single-cause confounders affecting AC .

Moreover, the solution to Equation (15) always exists under
weak regularity conditions in the appendix.

Proof sketch. The proof adopts a similar argument as in the
proof of Theorem 1. We only need to take care of the addi-
tional (observed) single-cause confounders and the selection
operator. In particular, Assumption 3.2 lets us shift from the
selection biased distribution P (y | z, aC , usng

C , s = 1) to the
non-selection-biased one P (y | z, aC , usng

C ).The full proof is
in the appendix.

Causal identification on general causal graphs (Fig-
ure 2b). Based on the previous analysis on the reduced graph,
we establish identification on general causal graphs.

Theorem 5. Assume the causal graph Figure 2b. Assume a
variant of Assumption 3 and Assumption 4 (detailed in the
appendix), the intervention distribution of the causes AC is
identifiable using Equation (14) and Equation (15).

Proof sketch. This result is a direct consequence of Lemma 3
and Lemma 4. The full proof is in the appendix.



Causal estimation with the deconfounder
We finally prove the correctness of the deconfounder algo-
rithm on general causal graphs. We build on the identification
result on general causal graphs (Theorem 5). We then show
that the deconfounder provides correct causal estimates by
implicitly solving the integral equation (Equation (15)). This
argument is similar to the argument of Theorem 2.
The deconfounder algorithm for general causal

graphs with selection bias extends the version de-
scribed in the previous section (See the appendix for
details). It outputs P̂ (y, a1, . . . , am, u

sng, ẑ | s = 1) and
P̂ (a1, . . . , am, u

sng, ẑ).
We make a variant of Assumption 2 and state the correct-

ness result for the deconfounder on general causal graphs.
Assumption 5. The deconfounder estimates satisfy:
1. It is consistent with Assumption 3.1:

P̂ (a1, . . . , am | ẑ, usng, s = 1)

= P̂ (a1, . . . , am | ẑ, usng). (17)
2. It is consistent with Assumption 4.1:

P̂ (y | aC , aX , f(aN ), ẑ, usng, s = 1)

= P̂ (y | aC , aX , ẑ, usng, s = 1). (18)

3. The conditional P̂ (ẑ | aC , aX , usng, s = 1) is complete in
aX for almost all aC .

P̂ (ẑ | aC , aX , usng, s = 1), Equation (17), and Equation (18)
are computed from the deconfounder estimate.
Theorem 6. (Correctness of the deconfounder on general
causal graphs) Assume the causal graph Figure 2b. Assume
a variant of Assumption 3 and Assumption 4 (detailed in the
appendix). Under Assumption 5 and weak regularity con-
ditions, the deconfounder provides correct estimates of the
intervention distribution:

P̂ (y |do(aC)) = P (y |do(aC)). (19)
Proof sketch. The proof of Theorem 6 follows a similar ar-
gument as in the proof of Theorem 2. We only need to ad-
ditionally take care of the single-cause confounders and the
selection operator. The full proof is in the appendix.

Theorem 6 establishes the correctness of the deconfounder
on general causal graphs under certain types of selection bias.
It justifies the deconfounder on general causal graphs.
We illustrate Theorem 5 and Theorem 6 with a linear ex-

ample in the appendix.

Discussion
We take a causal graphical view of “the blessings of multiple
causes”. Treating some causes as proxy variables of the shared
confounder, we can identify the intervention distributions of
the other causes. Thus, for a general class of causal graphs, we
prove that the intervention distribution of subsets of causes is
identifiable. Further, we show that the deconfounder algorithm
makes valid inferences of these intervention distributions, a
result that justifies the deconfounder on causal graphs. The
results of this paper generalize the theory in Wang and Blei
(2018) and extends the applicability of the deconfounder.
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Appendix

Example: A linear causal model
We illustrate Theorems 5 and 6 in a linear causal model.

Consider the meal/body-fat example. The causes are 10 types of food A1, . . . , A10; the outcome is a person’s body fat Y . How
does food consumption affect body fat?

In this example, the individual’s lifestyle Umlt is a multi-cause confounder. Whether a person is veganWmlt is a multi-cause
null confounder. Both Umlt andWmlt are unobserved. Whether one has easy access to good burger shops U sng is a single-cause
confounder; it affects both burger consumption A1 and body fat percentage Y ; U sng is observed. Finally, the observational data
comes from a survey with selection bias S; people with healthy lifestyle are more likely to complete the survey. Figure 1a shows
the causal graph with a subset of the causes.

Every variable is associated with a disturbance term ε, which comes from a standard normal. Given these variables, suppose
the real world is linear,

Umlt = εUmlt , U sng = εUsng ,Wmlt = εWmlt ,

A1 = αA1UU
mlt + αA1WW

mlt + αA1U ′U sng + εA1
,

Ai = αAiUU
mlt + αAiWW

mlt + εAi , i = 2, . . . , 10,

Y =

10∑
i=1

αY AiAi + αY UU
mlt + αY U ′U sng + εY .

These equations describe the true causal model of the world. The confounders and null confounders {Umlt,Wmlt} are unobserved.
We are interested in the intervention distribution of the first two food categories, burger (A1) and broccoli (A2):

P (y |do(a1, a2)). (We emphasize that we might be interested in any subsets of the causes.) This world satisfies the assumptions
of Theorem 5. Even though the confounders Umlt are unobserved, the intervention distribution P (y |do(a1, a2)) is identifiable.
Now consider a simple deconfounder. Fit a 2-D probabilistic principal component analysis (ppca) to the data about food

consumption {A1, . . . , A10}; we do not model the outcome Y . Wang and Blei (2018) also checks the model to ensure it fits the
distribution of the assigned causes. (Let’s assume that 2-D ppca passes this check.)

ppca leads to a linear estimate of the substitute confounder,

Ẑ =

(
10∑
i=1

γ1iAi + ε1Ẑ ,

10∑
i=1

γ2iAi + ε2Ẑ

)
, (20)

for parameters γ1i and γ2i, and Gaussian noise εi,Ẑ .
This substitute confounder Ẑ satisfies Assumption 5. Plausibly, the real world satisfies the variant of Assumption 3 and

Assumption 4. These assumptions greenlight us to calculate the intervention distribution. We fit an outcome model using the
substitute confounder Ẑ and calculate the intervention distribution using Equation (22). Theorem 6 guarantees that this estimate
is correct.

The deconfounder on general causal graphs
The deconfounder algorithm for general causal graphs with selection bias extends the version described in the previous sec-
tion. Specifically, Assumption 2 allows the deconfounder algorithm to have access to both the non-selection-biased data
P (a1, . . . , am, u

sng) and the selection-biased data P (y, usng, a1, . . . , am | s = 1). In this case, the deconfounder algorithm
outputs two estimates:

P̂ (a1, . . . , am, u
sng, ẑ) =

P̂ (ẑ)P̂ (usng | a1, . . . , am, ẑ)

n∏
i=1

P̂ (ai | ẑ), (21)

and

P̂ (y, a1, . . . , am, u
sng, ẑ | s = 1).

We note that the former is constructed using only the causes A1, . . . , Am and single-cause confounders U sng. Moreover, both
deconfounder estimates must be consistent with the observed data:∫

P̂ (a1, . . . , am, u
sng, ẑ) dẑ = P (a1, . . . , am, u

sng),



∫
P̂ (y, a1, . . . , am, u

sng, ẑ | s = 1) dẑ

= P (y, a1, . . . , am, u
sng | s = 1).

We note that the substitute confounder Ẑ does not necessarily coincide with the true confounders Umlt or the true null
confoundersWmlt. Finally the deconfounder estimates

P̂ (y |do(aC))
∆
=

∫
P̂ (y | a1, . . . , am, ẑ, u

sng
C , s = 1) (22)

× P̂ (a{1,...,m}\C , ẑ)P (u
sng
C ) dusng

C dẑ da{1,...,m}\C ,

where U sng
C are the single-cause confounders that affect the causes AC .

Proof of Theorem 1
Proof. The proof of Theorem 1 relies on two observations.
The first observation starts with the integral equation we solve:

P (y | aC , f(aN )) (23)

=

∫
h(y, aC , aX )P (aX | aC , f(aN )) daX (24)

=

∫ ∫
h(y, aC , aX )P (aX |u)P (u | aC , f(aN )) daX du. (25)

The first equality is due to Equation (3). The second equality is due to the conditional independence implied by Figure 1b:

AX ⊥ AC , f(aN ) |U.

The second observation relies on the null proxy:

P (y | aC , f(aN )) (26)

=

∫
P (y |u, aC , f(aN ))P (u | aC , f(aN )) du (27)

=

∫
P (y |u, aC)P (u | aC , f(aN )) du. (28)

The first equality is due to the definition of conditional probability. The second equality is due to the second part of Assumption 1,
which implies Y ⊥ f(aN ) |U,AC . The reason is that

P (y |u, aC , f(aN )) (29)

=

∫
P (y |u, aC , aX , f(aN ))P (aX |u, aC , f(aN )) daX (30)

=

∫
P (y |u, aC , aX )P (aX |u, aC) daX (31)

=P (y |u, aC). (32)

In fact, it is sufficient to assume Y ⊥ f(aN ) |U,AC instead of Y ⊥ f(aN ) |U,AC , AX in Theorem 1. However, the former is
easier to check and interpret.

Comparing Equation (25) and Equation (28) gives∫ [
P (y |u, aC)−

∫
h(y, aC , aX )P (aX |u) daX

]
× P (u | aC , f(aN )) du = 0, (33)

which implies

P (y |u, aC) =
∫
h(y, aC , aX )P (aX |u) daX . (34)

This step is due to the completeness condition in Assumption 1.2.



Equation (34) leads to identification:

P (y |do(aC)) (35)

=

∫ ∫
h(y, aC , aX )P (aX |u) daXP (u) du (36)

=

∫
h(y, aC , aX )P (aX ) daX . (37)

Consider the special case of a single cause as in Figure 1c. Let aC = {A1}, aX = {X}, aN = N , and f(aN ) = N . The
above proof reduces to the identification proof for proxy variables (Theorem 1 of Miao et al. (2018)).

Proof of Theorem 2
Proof. Assumption 2.2 guarantees the existence of some function ĥ such that

P̂ (y | aC , ẑ) =
∫
ĥ(y, aC , aX )P̂ (aX | ẑ) daX (38)

under weak regularity conditions. (We will discuss the reason in later sections of the appendix.)
We first claim that ĥ(y, aC , aX ) solves

P (y | aC , f(aN )) =

∫
ĥ(y, aC , aX )P (aX | aC , f(aN )) daX . (39)

Given this claim (Equation (84)), we have

P̂ (y |do(aC))

=

∫
P̂ (y | ẑ, aC)P̂ (ẑ) dẑ

=

∫
ĥ(y, aC , aX )P̂ (aX | ẑ) daX P̂ (ẑ) dẑ

=

∫
ĥ(y, aC , aX )P (aX ) daX

=P (y |do(aC)),

which proves the theorem. The first equality is due to Equation (7); the second is due to Equation (84); the third is due to
Equation (5); the fourth is due to the above claim (Equation (84)) and Theorem 1.

We next prove the claim (Equation (84)). Start with the right side of the equality.∫
ĥ(y, aC , aX )P (aX | aC , f(aN )) daX

=

∫ ∫
ĥ(y, aC , aX )P̂ (aX | ẑ)P̂ (ẑ | aC , f(aN )) daX dẑ

=

∫
P̂ (y | aC , ẑ)P̂ (ẑ | aC , f(aN )) dẑ

=P (y | aC , f(aN )),

which establishes the claim. The first equality is due to Equations (4) and (5); the second is due to Equation (38); the third is
due to Assumption 2.1, which implies

P̂ (y | aC , f(aN ), ẑ) = P̂ (y | aC , ẑ). (40)

Similar to Assumption 1.1, it is sufficient to assume Equation (40) directly. However, Assumption 2.1 is easier to check and
more interpretable; it directly relates to the deconfounder outcome model.



Existence of solutions to the integral equations
Theorem 1 involves solving the integral equation

P (y | aC , f(aN )) =

∫
h(y, aC , aX )P (aX | aC , f(aN )) daX . (41)

When does a solution exist for Equation (41)? We appeal to Proposition 1 of Miao et al. (2018).
Proposition 7. (Proposition 1 of Miao et al. (2018)) Denote L2{F (t)} as the space of all square-integrable function of t with
respect to a c.d.f. F (t). A solution to integral equation

P (y | z, x) =
∫
h(w, x, y)P (w | z, x) dw (42)

exists if
1. the conditional distribution P (z |w, x) is complete in w for all x,
2.
∫ ∫

P (w | z, x)P (z |w, x) dw dz < +∞,
3.
∫
[P (y | z, x)]2P (z |x) dz < +∞,

4.
∑+∞
n=1 | < P (y | z, x), ψx,n > |2 < +∞,

where the inner product is < g, h >=
∫
g(t)h(t) dF (t), and (λx,n, φx,n, ψx,n)

∞
n=1 is a singular value decomposition of the

conditional expectation operatorKx : L2{F (w |x)} → L2{F (z |x)},Kx(h) = E [h(w) | z, x] for h ∈ L2{F (w |x)}.
Leveraging Proposition 7, we can establish sufficient conditions for existence of a solution to Equation (41).

Corollary 8. A solution exist for the integral equation Equation (41) if
1. the conditional distribution P (f(aN ) | aX , aC) is complete in aX for all aC ,
2.
∫ ∫

P (aX | f(aN ), aC)P (f(aN ) | aX , aC) daX df(aN ) < +∞,
3.
∫
[P (y | f(aN ), aC)]

2P (f(aN ) | aC) df(aN ) < +∞,
4.
∑+∞
n=1 | < P (y | f(aN ), aC), ψaC,n > |2 < +∞,

where ψaC,n is similarly defined as a component of the singular value decomposition.
We remark that the first condition is precisely Theorem 1.3; others are weak regularity conditions.
By the same token, we can establish sufficient conditions for solution existence of Equation (10), Equation (15). The same

argument also applies to the integral equation involved in Theorem 6:

P̂ (y | aC , ẑ, usng
C , s = 1) =

∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , s = 1) daX . (43)

It is easy to show that the conditions described in the main text are sufficient to guarantee the existence of solutions under weak
regularity conditions. We omit the details here.

Proof of Lemma 3
The idea of the proof is to start with the structural equations of the general causal graph Figure 2b. Then posit the existence
of a latent variable Z that renders all the causes conditionally independent; Figure 2c features this conditional independence
structure. We will quantify the information (i.e. the σ-algebra) of this latent variable Z; Z contains the information of the union
of multi-cause confounders Umlt, multi-cause null confoundersWmlt, and some independent error. This result lets us establish

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1) = P (y |usng, z, a1, . . . , am, s = 1). (44)

We start with a generic structural equation model for multiple causes.

Wk = fWk
(εWk

), k = 1, . . . ,K,K ≥ 0, (45)
Uj = fUj (εUj ), j = 1, . . . , J, J ≥ 0, (46)
Vl = fVl(εVl), l = 1, . . . , L, L ≥ 0, (47)
Ai = fAi(WSWAi

, USUAi
, εAi), i = 1, . . . ,m,m ≥ 2, (48)

Y = fy(A1, . . . , Am, U1, . . . , UK , V1, . . . VL, εY ), (49)

where all the errors εWk
, εUj , εVl , εAi , εY are independent. Notation wise, we note that SWAi ⊂ {1, . . . ,K} is an index set; if

SWA1
= {1, 3, 4}, thenWSWAi

= (W1,W3,W4). The same notion applies to SUAi ⊂ {1, . . . , J}.



The notation in this structural equation model is consistent with the set up in Figure 2b.Wk’s are null confounders; Uj’s are
confounders; Vl’s are covariates. Moreover, USUAi indicates the set of confounders that have an arrow to both Ai and Y .WSWAi
indicates the set of null confounders that have an arrow to Ai; they do not have arrows to Y .
Relating to the single-cause and multi-cause notion, we have single-cause null confounders as

W sng ∆
= {W1, . . . ,WK}/

⋃
i,j∈{1,...,m}:i 6=j

(WSWAi
∩WSWAj

). (50)

To parse the notation above, recall thatWSWAi
is the set of null confounders that affects Ai.

⋃
i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
)

describes the set of null confounders that affect at least two of the Ai’s. Hence,W sng denotes the set of null confounders that
affect only one of the Ai’s, a.k.a. single-cause null confounders.
Before proving Lemma 3, we first prove the following lemma that quantifies the information in Z (in Figure 2c).

Lemma 9. The random variable Z in Figure 2c “captures” all multi-cause confounders, all multi-cause null confounders and
some independent error:

σ(Z) = σ
(
{εZ}

⋃
(∪i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
) ∪ (USUAi

∩ USUAj ))
)
, (51)

= σ
(
{εZ}

⋃
Wmlt

⋃
Umlt

)
. (52)

where εZ ⊥ (εY , V1, . . . , VL,∪i,j∈{1,...,m}:i6=j(WSWAi
∩WSWAj

) ∪ (USUAi
∩ USUAj ), S).

We can parse the notation in Lemma 9 in the same way as in Equation (50): ∪i,j∈{1,...,m}:i6=j(WSWAi
∩WSWAj

) denotes the set
of all multi-cause confounders; ∪i,j∈{1,...,m}:i 6=j(USUAi

∩ USUAj ) denotes the set of all multi-cause null confounders.

Proof. Without the loss of generality, we assume the compactness of representation in Equations (48) and (49). For any subset S
of the random variables S ⊂ {A1, . . . , Am, Y }, we assume the σ-algebra σ(

⋂
τ (S

W
Sτ
, SUSτ , S

V
Sτ
)) is the smallest σ-algebra that

makes all the random variables in S jointly independent. The assumption is made for technical convenience. We simply ensure
the arrows from theW,U, V ’s to the Ai’s do exist. In other words, all theW,U, V ’s “whole-heartedly” contribute to the Ai’s
when they appear in Equation (48). This assumption does not limit the class of causal graphs we study.

First we show that all multi-cause confounders and all multi-cause null confounders are measurable with respect to the substitute
confounder Z:

σ

 ⋃
i,j∈{1,...,m}:i 6=j

(WSWAi
∩WSWAj

) ∪ (USUAi
∩ USUAj )

 ⊂ σ(Z). (53)

Consider any pair of Ai and Aj . Figure 2c implies that

Ai ⊥ Aj |Z, (54)

for i 6= j and i, j ∈ {1, . . . ,M}. On the other hand, we have

Ai ⊥ Aj |σ
(
(WSWAi

∩WSWAj
), (USUAi

∩ USUAj )
)
, (55)

by the independence of errors assumption. Therefore, by the compactness of representation assumption, σ((WSWAi
∩

WSWAj
), (USUAi

∩ USUAj )) is the smallest σ-algebra that renders Ai independent of Aj . This implies

σ
(
(WSWAi

∩WSWAj
), (USUAi

∩ USUAj )
)
⊂ σ(Z). (56)

The argument can be applied to any pair of i 6= j, i, j ∈ {1, . . . ,M}, so we have

σ

 ⋃
i,j∈{1,...,m}:i6=j

(WSWAi
∩WSWAj

) ∪ (USUAi
∩ USUAj )

 ⊂ σ(Z). (57)

Next Figure 2c implies

σ(A1, . . . , AM ) 6⊂ σ(Z), (58)

and

σ(Y ) 6⊂ σ(Z). (59)



Therefore, we have

σ(Z) ⊂ σ
(
{εZ}

⋃
(∪i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
) ∪ (USUAi

∩ USUAj ))
)
, (60)

where εZ is independent of all the other errors in the structural model, including those of A and Y .
The error εZ can have an empty σ-algebra: for example, εZ is a constant. Therefore, the left side of Equation (57) can be made

equal to the right side of Equation (60). We have

σ(Z) = σ
(
{εZ}

⋃
(∪i,j∈{1,...,m}:i 6=j(WSWAi

∩WSWAj
) ∪ (USUAi

∩ USUAj ))
)

(61)

= σ
(
{εZ}

⋃
Wmlt

⋃
Umlt

)
. (62)

for some random variable εZ that is independent of all other random errors ε’s.

As a direct consequence of Lemma 9, we have

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1) = P (y |usng, z, a1, . . . , am, s = 1), (63)

due to the definition of conditional probabilities and εZ ⊥ Y |S,U sng, Umlt,Wmlt, A1, . . . , Am. The latter is because εZ is
independent of all other errors.

Proof of Lemma 4
Proof. Denote U sng

C as the set of single-cause confounders that affects AC .
The proof of Lemma 4 relies on two observations.
The first observation starts with the integral equation we solve:

P (y | aC , f(aN ), usng
C , s = 1) (64)

=

∫
h(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX (65)

=

∫ ∫
h(y, aC , aX , u

sng
C )P (aX | z)P (z | aC , f(aN ), usng

C , s = 1) daX dz (66)

The first equality is due to Equation (15). The second equality is due to Assumption 3.2.
The second observation relies on the null proxy:

P (y | aC , f(aN ), usng
C , s = 1) (67)

=

∫
P (y | z, aC , f(aN ), usng

C , s = 1)P (z | aC , f(aN ), usng
C , s = 1) dz (68)

=

∫
P (y | z, aC , usng

C , s = 1)P (z | aC , f(aN ), usng
C , s = 1) dz (69)

The first equality is due to the definition of conditional probability. The second equality is due to the second part of Assumption 4;
it implies Y ⊥ f(aN ) |Z,U sng

C , AC , S = 1. The reason is that

P (y | z, aC , f(aN ), usng
C , s = 1) (70)

=

∫
P (y | z, aC , aX , f(aN ), usng

C , s = 1)P (aX | z, aC , f(aN ), usng
C , s = 1) daX (71)

=

∫
P (y | z, aC , aX , usng

C , s = 1)P (aX | z, aC , usng
C , s = 1) daX (72)

=P (y | z, aC , usng
C , s = 1). (73)

The second equality is again due to Assumption 3.2.
Comparing Equation (66) and Equation (69) gives∫ [

P (y | z, aC , usng
C , s = 1)−

∫
h(y, aC , aX , u

sng
C )P (aX | z) daX

]
× P (z | aC , f(aN ), usng

C , s = 1) dz = 0, (74)

which implies

P (y | z, aC , usng
C , s = 1) =

∫
h(y, aC , aX , u

sng
C )P (aX | z) daX . (75)



This step is due to the completeness condition in Assumption 4.2.
Equation (75) leads to identification:

P (y |do(aC)) (76)
=P (y | z, aC , usng

C )P (z)P (usng
C ) dz dusng

C (77)
=P (y | z, aC , usng

C , s = 1)P (z)P (usng
C ) dz dusng

C (78)

=

∫ ∫ ∫
h(y, aC , aX , u

sng
C )P (aX | z) daXP (z)P (usng

C ) dz dusng
C (79)

=

∫ ∫
h(y, aC , aX , u

sng
C )P (aX )P (usng

C ) daX dusng
C . (80)

In particular, the second equality is due to Assumption 3.2.

Proof of Theorem 5
We first state the variant of Assumption 3 and Assumption 4 required by Theorem 5. We essentially replace Z with (Umlt,Wmlt)
in these assumptions.
Assumption 6. (Assumption 3’) The causal graph Figure 2b satisfies the following conditions:

1. All single-cause confounders U sng
i ’s are observed.

2. The selection operator S satisfies

S ⊥ (A, Y ) |Umlt,Wmlt, U sng. (81)

3. We observe the non-selection-biased distribution

P (a1, . . . , am, u
sng)

and the selection-biased distribution
P (y, usng, a1, . . . , am | s = 1).

Assumption 7. (Assumption 4’) There exists some function f and a set ∅ 6= N ⊂ {1, . . . ,m}\C such that

1. The outcome Y does not causally depend on f(aN ):

f(aN ) ⊥ Y |AC , AX , U
mlt,Wmlt, U sng, S = 1 (82)

where X = {1, . . . ,m}\(C ∪ N ) 6= ∅.
2. The conditional P (umlt, wmlt | aC , f(aN ), usng

C , s = 1) is complete in f(aN ) for almost all aC and usng
C , where U sng

C is the
single-cause confounders affecting AC .

3. The conditional P (f(aN ) | aC , aX , usng
C , s = 1) is complete in aX for almost all aC and usng

C .

Under these assumptions, Theorem 5 is a direct consequence of Lemma 3 and Lemma 4. The reason is that Umlt,Wmlt, U sng

constitutes an admissible set to identify the intervention distributions P (y |do(aC)).

Proof of Theorem 6
We assume Assumption 6 and Assumption 7 as described in ?? .

Proof. Assumption 5.2 guarantees the existence of some function ĥ such that

P̂ (y | aC , ẑ, usng
C , s = 1) =

∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , s = 1) daX (83)

under weak regularity conditions. (We discuss the reason in ?? .)
We first claim that ĥ(y, aC , aX , usng

C ) solves

P (y | aC , f(aN ), usng
C , s = 1) =

∫
ĥ(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX . (84)



Given this claim (Equation (84)), we have

P̂ (y |do(aC))

=

∫ ∫
P̂ (y | ẑ, usng

C , aC , s = 1)P̂ (ẑ)P (usng
C ) dẑ dusng

C

=

∫ ∫ ∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , s = 1) daX P̂ (ẑ)P (u
sng
C ) dẑ dusng

C

=

∫ ∫ ∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ) daX P̂ (ẑ)P (usng

C ) dẑ dusng
C

=

∫ ∫
ĥ(y, aC , aX , u

sng
C )P (aX ) daXP (u

sng
C ) dusng

C

=P (y |do(aC)),

which proves the theorem. The first equality is due to Equation (22); the second is due to Equation (83); the third is due to
Assumption 5 and U sng

C being the single-cause confounders for AC ; the fourth is due to marginalizing out Ẑ; the fifth is due to
the above claim (Equation (84)) and Theorem 5.

We next prove the claim (Equation (84)). Start with the right side of the equality.∫
ĥ(y, aC , aX , u

sng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX

=

∫ ∫
ĥ(y, aC , aX , u

sng
C )P̂ (aX | ẑ, usng

C , aC , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) daX dẑ

=

∫
P̂ (y | aC , ẑ, usng

C , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) dẑ

=

∫
P̂ (y | aC , f(aN ), ẑ, usng

C , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) dẑ

=P (y | aC , f(aN ), usng
C , s = 1),

which establishes the claim. The first equality is due to Equation (21); the second is due to Equation (83); the third equality is
due to Assumption 5.2, which implies

P̂ (y | aC , f(aN ), ẑ, usng
C , s = 1) = P̂ (y | aC , ẑ, usng

C , s = 1). (85)

The fourth equality is due to marginalizing out ẑ.

Constructing candidate f(aN )’s from the deconfounder outcome model
We illustrate how to construct candidate f(aN )’s in the deconfounder outcome model.

Consider a fitted linear outcome model

Y =

10∑
i=1

αY AiAi + αY ZẐ + αY U ′U sng + εY . (86)

where all the random variables are Gaussian.
It implies that there exists f1(A9, A10) = A9 + α9,10A10 that satisfies

f1(A9, A10) ⊥ Y | Ẑ, U sng, A1, . . . , A8,

where
α9,10 = − α9Var(A9) + α10Cov(A9, A10)

α9Cov(A9, A10) + α10Var(A10)
.

The reason is that f(A9, A10) ⊥ (α9A9 + α10A10). Hence f(aN ) = A9 + α9,10A10 satisfies Assumption 5.2.
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