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Abstract

The strata-specific treatment effect function (TE function) de-
fines a random variable giving the average treatment effect
for a randomly drawn strata and thus, has a corresponding
cumulative distribution function (CDF). The CDF is of in-
terest because it gives the analyst a percentage of the pop-
ulation whose average effect exceeds a given threshold and
therefore provides a measure of what segment of the pop-
ulation will benefit (or receive a deleterious effect) beyond
a certain level. However, the CDF is not pathwise differen-
tiable, so we will estimate it with a family of pathwise differ-
entiable kernel smoothed parameter mappings as a strategy to
provide inference. We present a cross-validated targeted max-
imum likelihood estimator (CV-TMLE), which assumes the
TE CDF is continuous. We show that the use of highly adap-
tive lasso (HAL) to fit the outcome model and, in the case of
an observational study, the treatment mechanism, guarantees
asymptotic efficiency under the condition that the models are
of finite sectional variation norm and are continuous from the
right with left hand limits. We also provide conditions under
which we can let the bandwidth approach 0 and guarantee
a normal limiting distribution if using HAL. Through simu-
lations we verify theoretical properties of the estimator and
show the importance of machine learning over conventional
regression approaches to fitting the nuisance parameters. We
offer a bandwidth selector that points the way for future de-
velopments to minimize MSE in estimating the TE CDF.

Background and Motivation
The stratum-specific treatment effect or TE function is
defined as a random variable given by the average treatment
effect for a randomly drawn stratum of baseline covariates.
Estimating the cumulative distribution function or CDF of
the TE function estimates the proportion of the population
that has an average treatment effect at or below a given
level. Because clinicians treat patients based on patient
characteristics and evaluating public health policy depends
on assessing whether a policy has a large positive or
possibly negative effect on segments of the population,
such is of interest in accounting for heterogeneous effects
beyond a basic population average effect. This paper is also
a continuance of previous work estimating the variance of
TE function (Levy et al. 2018).

Much consideration has been given to the distribution of
Y1 − Y0, where Ya is the counterfactual outcome under the
intervention to set treatment to a value of a ∈ {0, 1}, as per
the neyman-rubin potential outcomes framework (Neyman
1923), (Rubin 1974). Neyman, 1923, realized, in estimat-
ing the mean of Y1 − Y0, that the standard errors for small
samples depended estimating the correlation of Y1 and Y0

for which he had not the data. Assumptions needed to esti-
mate the joint distribution of Y1 and Y0 are hard to verify.
Fisher, 1951 suggests one can essentially create the coun-
terfactual Y1 − Y0 by careful design. Heckman and Smith,
1998 estimate the quantiles of Y1 − Y0 via the assumption
of quantiles being preserved from Y1 to Y0 given a strata of
confounders. Without strong assumptions, using tail bounds
(Frechet 1951) to estimate the quantiles of Y1 − Y0 via the
marginals of Y1 and Y0 tends to leave too big of a mea-

sure of uncertainty to be useful (Heckman and Smith 1997).
Cox, 1958, assumes var(Y1−Y0) = 0 for predefined homo-
geneous subgroups, essentially assuming the distribution of
Y1 − Y0 is the same as the distribution of E[Y1 − Y0 | W ]
for a finite set of W . The CDF of E[Y1 − Y0 | W ] is what
we aim to estimate.

Data
Our full data, including unobserved measures, is assumed to
be generated according to the structural equations (Wright
1921), (Strotz and Wold 1960), (Pearl 2000) below. We first
assume a joint distribution, U = (UW , UA, UY ) ∼ PU ,
an unknown distribution of unmeasured variables.
O = (W,A, Y ) are the measured variables. In the
time ordering of occurrence we have W = fW (UW ) where
W is a vector of confounders, A = fA(UA,W ), where A is
a binary treatment and Y = fY (UY ,W,A), where Y is the
outcome, either binary or bounded continuous. We thusly
define a distribution PU,O, via (U,O) ∼ PU,O.

The full-data model, MF , consists of all possible PU,O
which, may be non-parametric or include knowledge about
the data generating system, such as the treatment mecha-
nism, as in a randomized trial. The observed data model,M,
is linked to MF in that we observe O = (W,A, Y ) ∼ P
where O = (W,A, Y ) is generated by PUO according to
the structural equations above. The observed data distribu-
tion, P , is therefore an element of the observed data model,
M. We will also assume throughout that we will observe n
independent identically distributed draws from the true dis-
tribution, P0.

Parameter of interest and identification
First we define the potential outcome under the inter-
vention to set the treatment to a value a to 0 or 1 as
(Neyman 1923) Ya = fY (UY , a,W ). The TE func-
tion with respect to PU,O ∈ MF is then defined as
bPU,O (W ) = EPU,O [Y1|W ] − EPU,O [Y0|W ]. Our param-
eter of interest is a mapping from MF to Rd defined
by ΨF (PU,O) = (ΨF

t1(PU,O), ...,ΨF
td

(PU,O)), where
ΨF
ti(PU,O) = EPU,O I(bPUX (W ) ≤ ti). We will assume

Ya ⊥ A|W , i.e. the randomization assumption, on MF

(Robins 1986), (Greenland and Robins 1986) as well
as the positivity assumption, which states for all a and
W , 0 < EP [A = a | W ] < 1. We thus have that
bP (W ) = EP [Y |A = 1,W ] − EP [Y |A = 0,W ], which
yields bPU,O (W ) = bP (W ). We can then identify the
parameter of interest as a mapping from the observed data
model,M, to Rd via Ψ(P ) = (Ψt1(P ), ...,Ψtd(P )), where
Ψti(P ) = EP I(bP (W ) ≤ ti).

Ψ is not pathwise differentiable (van der Vaart 2000) so
instead we consider the smoothed version of the parame-
ter mapping, using kernel, k, with bandwidth, δ, which is
pathwise differentiable and hence, provides a strategy for
providing inference for the smoothed TE CDF as well as
the TE CDF itself. Here we will suppress k in the no-
tation for convenience and define the ith component of



the d − dimensional parameter mapping as Ψδ,ti(P ) =
EW

∫
x

1
δk
(
x−ti
δ

)
I(b(W ) ≤ x)dx =

∫
x

1
δk
(
x−ti
δ

)
F (x)dx

so we can write the d-dimensional parameter mapping as
Ψδ(P ) = (Fδ(t1), ..., Fδ(td)), where Fδ(ti) is a shortened
notation for the smoothed CDF, F (ti).

A Brief Note on Pathwise Differentiability Taken from
van der Vaart, 2000: A parameter, Ψ, is pathwise differen-
tiable relative to the tangent space of P , if for every sub-
model Pt with score function, g, in the tangent space, there
exists a continuous linear map from Ψ̇P : L2(P ) → Rk
such that as t vanishes

Ψ(Pt)−Ψ(P )

t
−→ Ψ̇P (g)

A classic case of a non pathwise differentiable parameter
is the density for a continuous distribution (in the absence
of any parametric assumptions) at a point which depends
on a set of measure 0. In our case, the pathwise derivative
for the TE CDF at a given value, t, does not exist because
the indicator function is not differentiable where it jumps at
the value of t. Many of the TE values far away from t will
not be very helpful in estimating the CDF at t with much
precision, so we focus on a bandwidth of TE values around
t in a similar manner to a kernel density estimator. As n
becomes larger we want to decrease the bandwidth so as to
minimize the mean squared error.

The pathwise derivative defined above has a representa-
tion as

∫
gD∗(P )dP , where D∗(P ) is a unique element

of the tangent space called the efficient influence curve or
canonical gradient, whose variance is the cramer-rao lower
bound (minimum variance possible) for any regular asymp-
totically linear estimator of the parameter (van der Vaart
2000). Knowing D∗(P ) enables the construction of estima-
tors for non-parametric and semi-parametric models, that are
asymptotically efficient in that asymptotically their variance
attains the cramer-rao lower bound. Examples of such es-
timators are the one-step estimator and targeted maximum
likelihood estimator (TMLE) or its cross-validated counter-
part, CV-TMLE (van der Laan and Rubin 2006) (Zheng and
van der Laan 2010) (van der Laan and Rose 2011). We prefer
the CV-TMLE and TMLE, because they have the advantage
of being substitution estimators and, therefore, obey natural
parameter bounds which, has been shown to improve stabil-
ity in finite samples (van der Laan and Rose 2011). For our
case, if we plug in a model for many points on the TE CDF,
we will be guaranteed that the estimates with be both mono-
tonic and bounded within [0,1], where a non-substitution es-
timator holds no such guarantees. We prefer CV-TMLE over
TMLE because, as we will see, it requires only one condition
as opposed to two for TMLE in order to guarantee asymp-
totic efficiency.

The Cross-Validated Targeted Maximum
Likelihood Estimator, CV-TMLE

We will employ the notation, Pnf to be the empirical aver-
age of function, f(·), and Pf to be EP f(O). Define a loss
function, L(P )(O), which is a function of the observed data,
O, and indexed at the distribution on which it is defined, P ,

such that EP0L(P )(O) is minimized at the true observed
data distribution, P = P0. We scale a continuous outcome
to be in [0, 1] via the transformation Ys = Y−m

M−m where m
and M are minimum and maximum outcomes respectively,
obtained from the data or known a priori. A given distribu-
tion, P , in our model defines an outcome model with condi-
tional mean, Q̄(A,W ) = EP [Y | A,W ], and loss function,
L(P )(w, a, y) = −logpY (y | a,w), where pY is the condi-
tional likelihood of Y given A and W .∫

L(P )(w, a, y)dP0

=

∫ [
−
(
ylog(Q̄(a,w)) + (1 − y)log(1 − Q̄(a,w))

)]
dP0

(1)

For continuous outcome scaled to be in [0,1], (1) is the
mean of the so-called quasibinomial loss, also minimized
at the truth (Wedderburn 1974) (McCullagh 1983). So,
whether we scale our continuous outcomes to be between 0
and 1 or have a binary outcome we will use the same loss
function and thus, the targeting portion of the CV-TMLE
or TMLE procedure, performed with logistic regression
(see section ), will be identical for bounded continuous
or binary outcomes. The scaling of continuous outcomes
changes nothing of importance because when we evaluate
our parameter on the original scale we are smoothing the TE
CDF E(b(W ) ≤ t) = E(b(W )/(M −m) ≤ t/(M −m)),
the parameter mapping for scaled outcomes.

Let D?
Ψδ

(P )(O) be the efficient influence curved, which
is d-dimensional, defined for our smoothed TE CDF param-
eter (see (3) below). A targeted maximum likelihood (TML)
update (van der Laan and Rubin 2006) is a map of an initial
estimate, P 0

n , of the data generating distribution to P ∗n , such
that PnL(P ∗n) ≤ PnL(P 0

n) and PnD∗(P ∗n) = oP (n−1/2).
P ∗n is called the TMLE update of P 0

n and the TMLE esti-
mate of the parameter of interest is the substitution or plug-
in estimator, Ψ(P ∗n). We refer to the initial estimate of the
parameter of interest as Ψ(P 0

n). To perform the TML updat-
ing procedure we define a 1-dimensional submodel, called
a canonical locally least favorable submodel or clfm, (Levy
2018b):
Definition 0.1. A canonical 1-dimensional locally least fa-
vorable submodel (clfm) of an estimate, P 0

n , of the true dis-
tribution, P0, is

{P 0
n,ε s.t

d

dε
PnL(P 0

n,ε)

∣∣∣∣
ε=0

= ‖PnD?(P 0
n)‖2, ε ∈ [−δ, δ]}

(2)
where P 0

n,ε = P 0
n and ‖ · ‖2 is the euclidean norm.

The reader may be familiar with the d-dimensional lo-
cally least favorable submodel or lfm (van der Laan and
Rubin 2006) or universal least favorable submodel (ulfm)
which is also 1 dimensional (van der Laan and Gruber 2016),
which has the advantage of not relying on an iterative pro-
cedure, but here we did not notice an appreciable difference
in performance so we used the faster clfm-based procedure.
To construct a clfm, one needs to know the efficient influ-
ence curve of our parameter of interest (van der Vaart 2000),



which is a d-dimensional curve (for each of the d compo-
nents of the parameter mapping), where the ith component
is given by

D
?
Ψδ,ti

(P0)(O) =
−1

δ
k

(
b0(W )− ti

δ

)
∗

2A− 1

g0(A|W )
(Y − Q̄0(A,W ))

+

∫
1

δ
k

(
x− ti
δ

)
I(b0(W ) ≤ x)dx−Ψδ,ti (P0)

(3)

where ti is a given TE value (average treatment effect level),
k is the kernel and bandwidth is δ. The reader may find the
proof in the appendix of Levy and van der Laan, 2018. From
here we will shorten the notation and refer to D∗ as the
d−dimensional efficient influence curve with components
D?
i = DΨδ,ti

.
Our initial estimate, P 0

n , of the true distribution, P0, is
defined by Q̄0

n(A,W ), an estimate of the outcome regres-
sion, Q̄0, gn, an estimate of the treatment mechanism, g0 and
QW,n, the empirical distribution, which estimates QW,0, the
distribution of W . We denote the empirical density as qW,n,
which estimates the true density, qW,0, of W . We can then
define the d-dimensional curve

H
0
(A,W ) = (H

0
1 (A,W ), H

0
2 (A,W ), ..., H

0
d(A,W ))

=
1− 2A

δgn(A|W )

(
k

(
b0n(w)− t1

δ

)
, ..., k

(
b0n(w)− td

δ

))

where b0n(Wi) = Q̄0
n(1,W )− Q̄0

n(0,W ). The initial em-
pirical risk for the outcome model is given by

PnL(Q̄
0
n) = −

1

n

n∑
i=1

[
YilogQ̄0

n(Ai,Wi) + (1− Yi)log(1− Q̄0
n(Ai,Wi))

]

Our efficient influence curve approximation at the initial
estimate is given by D∗(P 0

n). Now define the elements of
the clfm of initial estimate,P 0

n , by keeping gn and qW,n fixed
and defining Q̄0

n,ε(A,W ) as

expit

(
logit(Q̄

0
n(A,W )) + ε

〈
H

0
(A,W ),

PnD
∗(P0

n)

‖PnD∗(P0
n)‖2

〉
2

)

We can then verify this satisfies the definition of a clfm
above. This then gives rise to the iterative procedure detailed
below in steps 1 through 4 below.

TML Algorithm
step 1: Obtaining Initial Estimates To perform a TMLE
we use an ensemble learning package such as sl3 (Coyle et
al. 2018a) or SuperLearner (Polley et al. 2017) to construct
the initial fit, Q̄0

n, of outcome model EP [Y | A,W ], and
the initial fit, gn, of the treatment mechanism, EP [A | W ],
thus providing the estimates Q̄0

n(Ai,Wi) and gn(Ai | Wi),
i ∈ 1 : n, i.e., for all n subjects.

step 2:
Starting with m = 0:
If |PnD∗j (Pmn )(O)| <

σ̂(D∗j (Pmn )(O))

log(n)n1/2 for all j then
P ?n = Pmn and go to step 4. Otherwise go to step 3. σ̂(·)
refers to the sample standard deviation of values taken

over the data. To provide some clarity: If n = 1000 then
log(n) ≈ 7, so the above stopping criterion ensures any
bias is second order at that point. More iterations after this
are only time-consuming and do not help with coverage to
any appreciable extent.

step 3:
Y as the outcome, offset = logit(Q̄mn )(A,W ) and so-

called clever covariate is computed as〈
(Hm−1(A,W ),

PnD
∗(Pmn )

‖PnD∗(Pmn )‖2

〉
2

where 〈·, ·〉2 is the dot-product or euclidean inner product.
Assume εm is the coefficient computed from the logistic re-
gression defined by

Q̄
m+1
n (A,W ) = expit

(
logit

(
Q̄
m
n (A,W )

)
+ ε

m
n H

m
(A,W )

)
We then update the models by the setting Q̄m+1

n (A,W ) =

expit

(
logit(Q̄

m
n (A,W ))− εmn

〈
(H1(P

m
n )(A,W ),

PnD
∗(Pmn )

‖PnD∗(Pmn )‖2

〉
2

)
set m = m+ 1 and return to step 2.

step 4:
The TMLE procedure yields Q̄∗n(A,W ) and our estimator

is then a plug-in estimator, with jth component:

Ψδ,tj (P
?
n) =

1

n

n∑
i=1

1

δ

∫
k

(
x− tj
δ

)
I(b∗n(Wi) ≤ x)dx

and standard errors are given by

σ̂n(D∗j (P ∗n))
√
n

where σ̂n(D∗j (P ∗n)) is the sample standard de-
viation of {D∗j (P ∗n)(Oi) | i ∈ 1 : n} and
b∗n(Wi) = Q̄∗n(1,W )− Q̄∗n(0,W ).

Performing a CV-TMLE To perform a CV-TMLE
(Zheng and van der Laan 2010) we would define a split, Bn,
which is a mapping on 1 : n, such that Bn(i) = 1 means the
ith observation is in the training set and Bn(i) = 0 means
the ith observation is in the validation set. We usually
define 10 splits for which the validation sets are disjoint
and comprise all n observations, as in typical 10-fold
cross-validation. A CV-TMLE is defined as an average
across the splits of estimates computed on the validation
sets.

On the training set of each split Bn, we would use an en-
semble learning package such as sl3 (Coyle et al. 2018a) or
SuperLearner (Polley et al. 2017) to construct the initial fit,
Q̄0
n,Bn

, of outcome model EP [Y | A,W ], and the initial fit,
gn,Bn , of the treatment mechanism, EP [A | W ]. We would
then predict the outcome and treatment probabilities on the
validation set defined by Bn. For all i ∈ 1 : n, we therefore
provide an estimate Q̄0

n(Ai,Wi) and gn(Ai | Wi) for when
observation i was in the validation set of one of the splits.
With these predictions we can proceed with steps 2 through
4 above.



TMLE conditions for Estimating Ψδ(P0)
The importance of the TMLE mapping is we then have

Ψδ,tj (P
?
n)−Ψδ,tj (P0) = (P 0

n−P0)D∗j (P ?n)+Rj,2(P ?n , P0)

where R2(P ∗n , P0) is given by
−1

δ

∫ [
k

(
b∗n(w)− t

δ

)((
g0(1|w)

gn(1|W )
− 1

)(
Q̄0(1, w)− Q̄∗n(1, w)

)
−

(
g0(0|w)

gn(0|w)
− 1

)(
Q̄0(0, w)− Q̄∗n(0, w)

))]
dQW,0(w)

+
1

δ

∫ [∫ b0(w)

b(w)
k

(
x− t
δ

)
dx + k

(
b(w)− t

δ

)
(b(w)− b0(w))

]
dQW,0(w)

The reader may see the proof in the appendix of Levy and
van der Laan, 2018.
Theorem 0.1. Assume the following two conditions

1. D∗j (P ∗n) is in a P0−donsker class for all j.
2. R2,j(P

∗
n , P0)) = op(1/

√
n) for all j.

3. D∗j (P ∗n)
L2(P0)−→ D∗j (P0) for all j. We note we do not need

this assumption as it is implied by the previous.
Then the TMLE outlined in steps 1 through 4 above is an

asymptotically efficient estimator of Ψδ,ti for all i in 1 : d.
The proof is given in van der Laan and Rubin, 2006. It is

shown in Zheng and van der Laan, 2010 that when perform-
ing a CV-TMLE, condition 1 above is automatically satis-
fied for the remainder term computed on each validation fold
and, therefore, we only need to satisfy condition 2.
Remark 1. If the TMLE or CV-TMLE conditions hold for
the initial estimates then they will also hold for the TMLE or
CV-TMLE updates (van der Laan 2016). Thus, as we show
in simulations, it is crucial we use state-of-the-art machine
learning methods in forming our initial estimates of the data
generating distribution.
Remark 2. From here on, all theorems will apply to either
TMLE or CV-TMLE so we will use the lighter TMLE nota-
tion where we need not keep track of the splits, Bn.

The Use of Highly Adaptive Lasso When using the
highly adaptive lasso (HAL) (van der Laan 2016), (van der
Laan and Gruber 2016) to perform the initial estimates,
we are guaranteed ‖Q̄0

n − Q̄0‖L2(P0) and ‖gn − g0‖L2(P0)

are oP (n−0.25) under the conditions that Q̄0 and g0 are of
bounded sectional variation norm and continuous from the
right with left-hand limits. We also have the following corol-
lary from Levy and van der Laan, 2018.
Theorem 0.2. Our remainder term can be bounded is as
follows:

R2,i(P
0
n, P0) =

1

δ
O

(
‖gn − g0‖L2

P0

‖Q̄0
n − Q̄0‖L2

P0

)
+

1

δ
O
(
‖b0n − b0‖

2
∞

)

or
1

δ
O

(
‖g0
n − g0‖L2

P0

‖Q̄0
n − Q̄0‖L2

P0

)
+

1

δ2
O

(
‖b0n − b0‖

2
L2
P0

)

The reader may see the proof in theorem B.2 in Levy and
van der Laan, 2018. This shows we are not guaranteed con-
sistent estimates based on knowledge of the treatment mech-
anism as in the case of doubly robust estimators. By the
above stated properties of HAL we immediately have the
following corollary:

Corollary 1. When using HAL to form initial estimates of
Q̄0 and g0, the TML estimator of Ψδ,ti(P0) (fixed band-
width, δ) will be asymptotically efficient.

Simultaneous Estimation and Confidence Bounds We
apply a procedure to give simultaneous confidence bands
(a number of standard errors to cover the truth for all d
smoothed parameters at a given significance level) for d
points on the TE CDF that accounts for correlation between
estimates via use of the correlation matrix of the efficient
influence curve approximation. It will yield bands smaller
than that of a bonferroni correction (Dunn 1961), only be-
ing approximately equal to such when estimates are com-
pletely uncorrelated. The reader may consult Levy and van
der Laan, 2018 for the procedure.

Allowing the Bandwidth, δ, to Vanish for n
Large

The reader may notice that below we bound the remainder
term in two different ways, one of which has δ in the
denominator and the other which has δ2 in the denominator.
If we let δ approach 0 as a function of n, then we would
prefer to only have δ in the denominator so as to allow δ to
approach 0 faster and hence, a lower mean squared error.
However, that condition is more difficult to guarantee as we
will point out.

We will refer to the following facts, where P 0
n is an initial

fit of P0 and P ∗n is a TMLE update of P 0
n .

1. The asymptotic variance of
√
n(Ψδ,ti(P

∗
n) − Ψδ,ti(P0))

is of order 1/δ. Theorem B.3, proven in Levy and van der
Laan, 2018.

2. The bias between unsmoothed TE CDF value at ti and the
smoothed parameter, Ψti(P0)−Ψδ,ti(P0), is of order δJ ,
where J is the order of the kernel (power of the kernel’s
first non-zero moment) and we assume the TE CDF to
have J continuous derivatives. Theorem B.4, proven in
Levy and van der Laan, 2018a.

Theorem 0.3. Assume the TE CDF has J continuous
derivatives. Assume we allow our bandwidth = δn =
O(n−1/(2J+1)). Let ‖Q̄0

n − Q̄0‖L2(P0) = oP (nrQ̄n ) and
‖gn − g0‖L2(P0) = oP (nrgn ) Then if rgn + rQ̄n ≤ −

J+1
2J+1

and either of

• A1: ‖Q̄0
n − Q̄0‖∞ = oP

(
− J+1

2(2J+1)

)
• A2: ‖Q̄0

n − Q̄0‖L2(P0) = oP

(
− 2J+3

4(2J+1)

)
√
δnnR2(P 0

n , P0)
p−→ 0

This statement follows immediately from Theorem 0.2.

Theorem 0.4. If using bandwidth of order δn =
O(n−1/(2J+1)) and HAL to form initial predictions then if
we use a kernel of order J > 4r+3

2 and the TE CDF has J
continuous derivatives,

√
δnnR2(P 0

n , P0)
p−→ 0.

The statement follows from the fact HAL guarantees
‖f0 − f0

n‖L2(P0) = OP (n−1/4−1/8(r+1)), when fitting a



function, f0 of finite sectional variation norm that is con-
tinuous from the right with left-hand limits (van der Laan
2016).
Remark 3. The motive for this theorem is that if we wanted
to minimize the MSE based on items 2 and 3 above,
as for a kernel density estimator, we would want δn =
O(n−1/(2J+1)). However, we also want the remainder term
to become truly second order when blown up by

√
δnn in or-

der for
√
δnn(Ψδn,ti(P

∗
n) − Ψδn,ti(P0)) to have a limiting

distribution. Thus, perhaps higher order kernels can be use-
ful in relaxing the requirements of Theorem 0.3 in fitting the
treatment mechanism and, especially, the outcome model.
For fitting nuisance parameters that are functions of vari-
ables of dimension 5, we would need a kernel of order 12 or
greater to guarantee theorem and 12 continuous derivatives
of the TE CDF. If ‖f0 − f0

n‖L∞ = OP (n−1/4−1/8(r+1))
then using a kernel of order J > 2r+1

2 and assuming
necessary smoothness on the TE CDF, would guarantee√
δnnR2(P 0

n , P0)
p−→ 0. Thus, if r = 5, we only require

a kernel of order 6 and hence, only 6 continuous derivatives
for the TE CDF.

Simulations
Well-specified Models
For well-specified logistic models where the data generating
system is given by the following: W is a random normal,
Pr(A = 1 | W ) = g(A | W ) = expit(.2 + .2 ∗W ) and
E[Y | A,W ] = expit(A+ 2.5∗A∗W +W ). The TMLE’s
using the MLE as an initial estimate performed very well,
with normal sampling distributions, nominal coverage (93%
or higher) of the smoothed parameter, as expected, and did
so for all kernels if we used bandwidth n−1/(2J+1) where
J is the order of the kernel and we let n attain values of
1000, 2500, 5000, 10000, 25000 and 50000. The MSE was
lowest for the well-specified MLE plug-in, also as expected,
but not appreciably. In the highly unlikely scenario that we
correctly specify the outcome model with a parametric form,
TMLE performance appears very reliable for covering the
smoothed parameter and yields vanishing standard errors as
sample size grows.

A Method for Choosing Bandwidth for a Given Ker-
nel We would like to form confidence bounds for the
non-pathwise differentiable parameter or unsmoothed ”true”
parameter, Ψ(P ) = EP I(b(W ) ≤ t) for P ∈ M,
and propose using some of the concepts in Chapter 25
of Targeted Learning in Data Science: Causal Inference
for Complex Longitudinal Studies by van der Laan and
Rose, 2018. We start with a largest bandwidth of size
n−1/(2J+1) where J is the order of the kernel. Then
we divide the bandwidth into 20 equal increments from
n−1/(2J+1)/20, 2n−1/(2J+1)/20, ..., n−1/(2J+1). We then
find the smallest set of 5 or more consecutive bandwidths
that are monotonic estimates with respect to the bandwidth.
If no such 5 or more consecutive bandwidths are found then
we choose the bandwidth n−1/(2J+1). Let us call the con-
secutive bandwidth sequence, Bc = {h1, ..., hc}, where h1

is the smallest. We also monotonize the variance so as to

force it to be increasing as the bandwidth gets smaller. We
then form confidence intervals using the monotonized vari-
ance for each bandwidth in Bc. If the sequence of estimates
is decreasing (increasing) as bandwidth decreases (for band-
widths in Bc), then we choose the confidence interval with
the minimum (maximum) right (left) bound. The idea is that
we are minimizing the MSE while maintaining nominal cov-
erage, assuming that the smoothed parameters are mono-
tonic as a function of the bandwidth for the bandwidths in
Bc and that this monotonicity represents the monotonicity
as the bandwidth approaches 0. If we apply the selector for
kernel order 10, we greatly assist in covering the true param-
eter and maintain nominal or very near nominal coverage of
the smoothed parameter for sample sizes up to 50,000. We
show results for sample sizes 1000, 2500 and 5000 in Ta-
ble 1. Similar results held for lesser order kernels as well.
Figure 1 below displays the heuristic behind our bandwidth
selector.

Figure 1:

Simulations for Misspecified Models
We call these simulations ”misspecified” because we use
the highly adaptive lasso or HAL (van der Laan and Gruber
2016) to recover the model without any specification on
functional forms. The data generating system consisted
of the following functions in the order listed. W is a
random normal, Pr(A = 1 | W ) = g(A | W ) =
expit(−.1 − .5 ∗ sin(W ) − .4 ∗ (|W | > 1) ∗ W 2) and
E[Y | A,W ] = expit(.3∗A+5∗A∗sin(W )2−A∗cos(W )).
We simulated 1100 draws from the above data generating
system and computed simultaneous TMLE’s for the TE
values -0.098, -0.018 0.062, 0.142, 0.222, 0.302, 0.382 and
0.462 using bandwidth 2500−0.2 and an order 1 polynomial
kernel. Similar results held for the uniform kernel.

Here we show the huge advantage of data adaptive esti-
mation in obtaining the initial estimates for CV-TMLE, us-
ing the highly adaptive lasso. TMLE glm used used logistic
regression with main terms and interactions for the initial es-
timates in CV-TMLE, while TMLE HAL used HAL for the
initial estimates. We can see it is catastrophic to use logis-
tic regression here while using HAL with TMLE procedure



achieved very close to nominal coverage with essentially no
bias (see table 2). Targeting helped remove bias from the
HAL initial estimates as well, shown in Figure 2, for one
of eight points on the TE CDF simultaneously estimated by
TMLE HAL. The other seven points had very similar sam-
pling distributions and bias.

Software
The reader may visit https://github.com/jlstiles/TECDFsim
(Levy 2018c) for procedures on how to reproduce the results
here-in and also visit https://github.com/jlstiles/TECDF
(Levy 2018a) for software on performing the targeting step
after obtaining initial estimates. This estimator is also avail-
able in the package https://github.com/tlverse (Coyle et al.
2018b), where the reader can also perform ensemble learn-
ing.

Conclusion
We have developed an estimator to efficiently estimate,
under conditions, the kernel smoothed version of the TE
CDF and also allow the bandwidth to approach zero and
guarantee a normal limiting distribution for the TE CDF
itself. Furthermore, our estimator does not rely on any
parametric assumptions on the data generating distribution.
We have shown our estimator hinges on data adaptive
estimation, particularly the use of the highly adaptive lasso,
to make our initial estimates in the targeted learning (van
der Laan and Rose 2011) framework. The TML update
helps eliminate bias and provides us with immediate infer-
ence for the smoothed parameter via the sample standard
deviation of the efficient influence curve approximation.
Our simulations have shown that for well-specified models,
choosing the bandwidth of optimal order n−

1
2J+1 (and

hence a vanishing bandwidth in n), assuming J con-
tinuous derivatives for the TE CDF, provides normal and
unbiased sampling distributions for the smoothed parameter.

The next step is to develop a way to optimally (small-
est MSE possible) select the bandwidth, δn, and kernel so
that the estimator minus the truth blown up by

√
nδn is nor-

mally distributed and covers the TE CDF nominally. Our
bandwidth selector in this paper still gives nominal or near-
nominal coverage of the smoothed parameter as the band-
width vanishes for large n, but is not yet reliable for cover-
ing the TE CDF itself, though we show it is a big improve-
ment over setting the bandwidth to n−

1
2J+1 . Our bandwidth

selector relies on the assumption that the smoothed parame-
ter is monotonically increasing or decreasing toward the un-
smoothed parameter as the bandwidth vanishes. Our method
of determining this monotonicity is somewhat arbitrary and
it also remains to be seen how this monotonicity generally
holds for small bandwidths. For instance, if the monotonic-
ity changes direction for a small bandwidth, our proposed
bandwidth selector might be problematic.

Table 1: coverage of smoothed parameter, kernel is order 10
Estimating smoothed TE CDF

n = 1000 n = 2500 n = 5000
TE meth fixed meth fixed meth fixed

−0.145 0.907 0.947 0.920 0.949 0.916 0.941
−0.085 0.911 0.953 0.950 0.946 0.939 0.934
−0.025 0.925 0.944 0.950 0.960 0.958 0.948
0.035 0.916 0.940 0.929 0.949 0.942 0.966
0.095 0.934 0.951 0.934 0.949 0.946 0.942
0.155 0.933 0.952 0.942 0.946 0.936 0.948
0.215 0.927 0.958 0.927 0.951 0.932 0.941
0.275 0.893 0.955 0.913 0.955 0.905 0.951

Estimating true TE CDF
−0.145 0.671 0.001 0.436 0 0.298 0
−0.085 0.612 0.136 0.593 0.024 0.743 0.001
−0.025 0.770 0.166 0.615 0.019 0.405 0.001
0.035 0.850 0.071 0.924 0.001 0.927 0
0.095 0.747 0.070 0.895 0 0.912 0
0.155 0.750 0.251 0.859 0.020 0.903 0
0.215 0.695 0.947 0.717 0.861 0.793 0.692
0.275 0.858 0.008 0.817 0 0.707 0

meth means we applied the bandwidth selection method, fixed
means we used bandwidth n−1/(2J+1)

where J is the kernel order.

Table 2: TMLE with HAL vs TMLE with glm
MSE Coverage

TE TMLE hal TMLE glm TMLE hal TMLE glm
-0.098 0.0008 0.0200 0.9173 0
-0.018 0.0009 0.0168 0.9255 0.0182
0.062 0.0009 0.0053 0.9373 0.5846
0.142 0.0007 0.0037 0.9492 0.8100
0.222 0.0006 0.0217 0.9618 0.1046
0.302 0.0007 0.0472 0.9518 0
0.382 0.0007 0.0580 0.9446 0
0.462 0.0007 0.0453 0.9409 0

Results for smoothed parameter
TMLE HAL used HAL for initial estimates
TMLE glm used glm for initial estimates
simultaneous TMLE hal coverage was 90%
TMLE glm coverage was 3%

Figure 2: TMLE Bias Reduction
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