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Abstract
To obtain valid causal effect estimates in instrumen-
tal variable (IV) studies, an instrument has to fulfill
(a.o.) the exclusion restriction and the exchangeability
assumption, whose justification, in practice, often lie
outside the model under consideration. Existing formal
approaches to analyze the validity of the exclusion re-
striction rely on the testable implications in IV models
derived by Balke and Pearl (1997). The present paper
presents a test for both the exclusion restriction and the
exchangeability assumption that is based on an entirely
different approach. The test relies on a comparison of
spectral measures of the covariates’ covariance matrix
induced by OLS and IV coefficient vectors respectively.
These vector-induced spectral measures should be sim-
ilar to the tracial spectral measure of the variance-
covariance matrix if the Independence between Cause
and Mechanism postulate is fulfilled. Monte Carlo sim-
ulation studies show the high accuracy of the test and
its robustness to the presence of additional (to the treat-
ment variable) endogenous covariates, the degree of en-
dogeneity of the treatment variable itself and varying
relevance of the instrument.

1 Introduction
Typical causal queries in diverse fields ranging from epi-
demiology to economics are concerned with the ques-
tion of what level an outcome variable Y will take if a
variable T is set to certain level; e.g. what would the
level of unemployment, Y , be if the minimum wage were
set at level T? This type of query is an interventional
query, the “holy grail of causal thinking” (Pearl and
Mackenzie, 2018), and requires assumptions about an
underlying causal model. Instrumental variables (IVs)
can be employed to answer such interventional queries.
To be useful, an IV, Z, has to fulfill three criteria.1

1. Z and T must be statistically dependent (relevance
assumption)

2. Z only affects Y through its relation with T (exclu-
sion restriction)

1In additiona, Z has to fulfill the monotonicity assump-
tion. We take this assumption for granted here.

3. Z and Y do not share common causes (exchangeabil-
ity assumption)

Of these assumptions only the first can easily be
tested statistically by a regression of X on Z and a
test whether the associated coefficient is different from
0. The remaining assumptions cannot, in general, be
tested since they involve the unobserved U . Neverthe-
less, the assumed causal structure implies testable con-
straints which can be leveraged to assess instrument
exogeneity (Balke and Pearl, 1997). This paper pro-
vides a test which can detect violations of the exclusion
restriction and the exchagneability assumption.

In this paper, we argue that an instrumental variable
which violates either the exclusion restriction or the ex-
changeability assumption (such an instrument will be
called endogenous from now on; vice versa, an instru-
ment which fulfills these assumptions is called exoge-
neous) leaves discernible statistical traces in the joint
distribution of the dependent, independent, and in-
strumented endogenous variables. By analyzing these
traces, it is possible to test whether a potential binary
instrument is exogenous. We show how the method
proposed by Janzing and Schölkopf (2018) (‘JS’ in the
following) to measure the extent to which an observed
statistical relationship is due to confounding or genuine
causation can be leveraged to devise a test for instru-
ment exogeneity. JS is representative of the surging in-
terest in causal modeling in the machine learning com-
munity (Peters et al., 2017).

The paper is structured as follows. First, we pro-
vide an overview of previous literature. Second, we de-
scribe the IV model to be analyzed. Third, we detail
the testing procedure. Fourth, we present results of
Monte Carlo simulations and a discussion. Finally, we
conclude.

2 Previous literature
The Sargan (1958)-Hansen (1982) J-test for overidenti-
fying restrictions arguably initiated the literature con-
cerned with specification testing in instrumental vari-
able (IV) models. The J-test can be used to test in-
strument exogeneity when there are more instruments
than endogenous regressors. Conditional on the as-
sumption that at least one instrument is exogenous, the

mailto:pburauel@diw.de


test can help decide whether all instruments are exoge-
nous. However, the test is not able to detect a situation
in which all instruments are endogenous.

A more recent strand of the literature proposes non-
parametric tests for exogeneity in mean regressions.
For example Blundell and Horowitz (2007) propose a
test for exogeneity in nonparametric regression analy-
sis which does not rely on non-parametric IV estima-
tion (which often suffers from slow convergence that, in
turn, results in low power of such tests). Breunig (2015)
uses series estimators to propose a test for exogene-
ity. Gagliardini and Scaillet (2017) employ a Tikhonov
Regularized estimator of the functional parameter to
minimize the distance criterion corresponding to the
moment conditions. Breunig (2018) extends these re-
sults to nonparametric quantile regression with non-
separable structural disturbances. Broadly conceived,
what unites these papers is their reliance on testing
whether the moment conditions implied by the instru-
mental variable model are fulfilled. By analyzing also
higher-order moments, these models can resort to overi-
dentifying restrictions even when there is only one in-
strument per endogenous variable.

Though diverse methods to test the exclusion restric-
tion in overidentified IV models have been proposed,
those for just identified models prove more elusive.
Kitagawa (2015) is the study closest to this paper as
it is the first to propose a test for the exclusion restric-
tion in just identified models with a binary treatment
and a binary instrument.

Kitagawa (2015) proposes testing the joint validity
of the exclusion restriction, random assignment of in-
strument, and the absence of defiers (instrument mono-
tonicity) by resorting to testable implications derived
by Balke and Pearl (1994), Balke and Pearl (1997) and
Heckman and Vytlacil (2005). These testable impli-
cations imply constraints on the outcome distributions
of defiers, compliers, never- and always-takers.2 Hu-
ber and Mellace (2015) and Mourifié and Wan (2017)
provide closely related extensions to Kitagawa (2015).
Huber and Mellace (2015) and Mourifié and Wan (2017)
provide closely related extensions to Kitagawa (2015).
The former propose a similar test which relies on
mean potential outcomes rather than their distribu-
tions. Mourifié and Wan (2017) build on Kitagawa
(2015) by representing his test in terms of conditional
moment inequalities which have the advantage to easily
incorporate additional covariates as well as to fit into
the intersection bounds framework of Chernozhukov et
al. (2013).

The test proposed in this paper builds on a sepa-

2In the potential outcomes notation (Holland, 1986) the
compliers are defined as those individuals who do not take
the treatment, Ti = 0, when Zi = 0 and who do take the
treatment, Ti = 1, when Zi = 1. Defiers are individuals who
do not take the treatment, Ti = 0, when Zi = 1 and who
do take the treatment, Ti = 1, when Zi = 0. Always-takers
have Ti = 1 regardless of Zi. Never-takers have Ti = 0
regardless of Zi.
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Figure 1: Graphical representation of the IV model
under study. T represents the binary variable of inter-
est. The red arrow from Z to Y indicates how the exclu-
sion restriction can be violated. The double-edged arrow
between U and Z indicates how the exchangeability as-
sumption can be violated. If either of the two arrows
is present, the instrument is endogeneous and the treat-
ment effect, τ , cannot be estimated consistently. The
proposed test investigates whether either of the two ar-
rows is present.

rately advancing literature on discovering causal sig-
nals in non-experimental data. The underlying idea,
which goes back to Haavelmo (1944), is that invariance
structures in observed data justify making statements
about the underlying causal structure of the system un-
der study without (quasi-)experimental or instrumental
variable approaches. This has been formalized from
an information-geometric perspective as the Indepen-
dence between Cause and Mechanism (ICM) postulate
(Janzing et al., 2012; Peters et al., 2017). Janzing and
Schölkopf (2018) show that traces of violations of ICM
can be discerned in the spectral measures of variance-
covariance matrices in the presence of unobserved con-
founding. In this paper, we show how employing this
reasoning can be used to analyze instrument exogeneity.

Thus, the main contribution of this paper is the pro-
posal of a novel testing approach which does not rely
on moment restrictions. Instead, our approach is based
on the decomposition of the spectral measure of the co-
variates’ variance-covariance matrix induced by the cor-
responding parameter vector. Since the present work
is, in turn, based on the ICM postulate, it adds to
the growing literature using ICM as a powerful con-
cept that helps to shed light on causal queries or to ad-
vance causal understanding more generally (Peters et
al., 2016; Besserve et al., 2017; Besserve et al., 2018).

3 Testing Endogeneity of an
Instrument

Consider the following model

Y = Xβ + τT + ε (1)

where X represents a set of d exogenous covariates, T
is a binary treatment indicator and τ the correspond-
ing causal treatment effect. A maintained assumption



throughout this paper is the constancy of τ (homogene-
ity of treatment effects). The test procedure will allow
us to evaluate whether a potential instrument, Z, fulfills
exclusion restriction and exchangeability assumption.

Before introducing the test procedure, it is instructive
to briefly, and on an intuitive level, review the approach
to estimate confounding strength by JS. Consider a sim-
ple linear regression setting in which a dependent vari-
able is regressed on a set of observed independent vari-
ables. It is hard to tell to which extent an observed
statistical relationship between the observed variables
is due to genuine causation and to which extent it is
due to confounding. JS approach this problem by re-
lying on the Independence between Cause and Mecha-
nism (ICM) postulate to provide a method to measure
the degree of confounding. What the ICM implies on an
intuitive level is that the mechanism, which translates
cause into effect and is represented by the true param-
eter vector, and the input to the mechanism or cause,
which is represented by ΣXX should be ‘independent’.
JS make the concept of ‘independence’ operational by
arguing that, if the ICM is fulfilled, the true parame-
ter vector should lie in generic orientation with respect
to the eigenspace spanned by the eigenvectors of the
covariates’ covariance matrix, ΣXX. More technically,
such genericity is defined by the equivalence of two spec-
tral measures: the spectral measure of ΣXX induced by
the true parameter vector (which results from weighting
the eigenvalues of ΣXX by that true parameter vector)
should be similar to the (unweighted) tracial spectral
measure of ΣXX.

The true parameter vector is, obviously, unknown
and this precludes a direct computation of the spectral
measure induced by that (true) parameter vector. How-
ever, the spectral measure induced by the estimated
(and possibly biased) parameter vector can be com-
puted from the data. The crucial result in JS is that this
spectral measure can be decomposed into one part that
is due to confounding and a second part that represents
a genuine causal relation. It can be parameterized by
a two-parametric family of probability measures. One
of the parameters represents confounding strength, the
relative weight of the confounding part in the decompo-
sition. The algorithm proposed by JS finds those two
parameter values that minimize the distance between
the two-parametric estimate of the vector-induced spec-
tral measure and the observed spectral measure induced
by the estimated (and possibly) biased parameter vec-
tor. In the main part of the paper I take their method as
given and show how it can be employed as a workhorse
in testing instrument exogeneity. As a courtesy to the
reader, the procedure to estimate κ is described in Ap-
pendix A.

In this section, we describe the test for evidence of
instrument endogeneity in a step-by-step manner. We
use the code provided by Janzing and Schölkopf3 to

3The code is generously made available at http://
webdav.tuebingen.mpg.de/causality/.

estimate κ.

1. Normalize the data such that all variables have the
same mean and variance as the treatment indicator
T .

2. Take the original data without the treatment vari-
able, ie. observations of Y and X\{T} (which includes
the covariates but excludes the treatment variable T ),
then calculate the degree of confounding following JS,
call the resulting metric κx := κ(X\{T};Y ).

3. Instrument the treatment variable with the instru-
ment (which you want to test for exogeneity). Calcu-
late the degree of confounding in the resulting data:
Y and the concatenation of the exogenous X and the
instrumented T and call it κi := κ(X\{T}, T̂ ;Y ), i for
‘instrumented’.

4. Take the difference between the two κs:

δ = κi − κx. (2)

Recall that a higher κ indicates more confounding.
The fundamental idea of instrumental variables tech-
niques is to extract that part of the variation in the
treatment variable which can be explained by the in-
strument. If that instrument is indeed exogeneous, the
resulting estimate of the treatment variable, T̂ , should
not covary with the unobserved confounder, U ; in other
words, T̂ should be unconfounded. Vice versa, if the
instrument is endogeneous, T̂ will be confounded. Cru-
cially, this is true regardless of the source of confound-
ing of the instrument (be it because of a violation of the
exclusion restriction or a violation of the exchangeabil-
ity assumption). To get an intuition for how the test
works consider the following two cases. First, suppose
the instrument indeed fulfills the exclusion restriction.
As a consequence T̂ is exogenous. This implies that the
degree of confounding when T̂ is added to the list of in-
dependent variables, measured by κi, should be smaller
than the ‘base level’ of confounding, κx. Thus, the re-
sulting δ should be smaller than zero. Second, if the
instrument does not fulfill the exclusion restriction, T̂
will still be confounded and adding T̂ as an additional
confounded variable to the list of independent variables
will increase κ relative to the base level of confounding:
κi is expected to be larger than κx and the resulting δ
positive. Underlying this reasoning is the assumption
that adding an exogenous explanatory variable to the
set of covariates will not increase the level of confound-
ing as measured by κ. The following proof will show
just that.

Theorem 1. We set out to prove that κ does not
increase upon adding the instrumented treatment vari-
able if the instrument is exogeneous. The definition
of κx can be rephrased in terms of true and estimated
parameter values as

κx :=

∥∥∥(β̂)− (β)
∥∥∥2

‖(β)‖2 +
∥∥∥(β̂)− (β)

∥∥∥2 =
A

B +A
(3)
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where β denotes the true parameter vector and β̂ the
estimated parameter vector. When an the instrumented
variable T̂ , whose coefficient is denoted with τ , is added
to the model, we have

κi =

∥∥∥∥(β̂τ̂
)
−
(
β
τ

)∥∥∥∥2

∥∥∥∥(βτ
)∥∥∥∥2

+

∥∥∥∥(β̂τ̂
)
−
(
β
τ

)∥∥∥∥2 . (4)

If the instrument is indeed exogeneous, we recover the
true causal effect of T , i.e. τ̂ = τ ; consequently,

κi =

∥∥∥∥(β̂ − β0

)∥∥∥∥2

∥∥∥∥(βτ
)∥∥∥∥2

+

∥∥∥∥(β̂ − β0

)∥∥∥∥2 . (5)

Therefore, κi ≤ κx when the instrument is indeed exo-
geneous. �

Under certain conditions, κi can be smaller than κx
if the instrument is slightly endogeneous, i.e. τ = τ̂
does not hold exactly. Let us define

∆κ := κi − κx =
A′

B′ +A′
− A

B +A
(6)

In order for κi to decrease relative to κx, the following
relation must hold:

∆b > ∆a⇔ ∆κ = κ′ − κ ≤ 0, (7)

where ∆k := ∆K
K = K′−K

K denotes the relative change
in a variable K.

∆b > ∆a

⇔ τ2

‖β‖2
>

(τ̂ − τ)2∥∥∥β̂ − β∥∥∥2

⇔

∥∥∥β̂ − β∥∥∥2

‖β‖2
>

(τ̂ − τ)2

τ2

(8)

If the average relative squared bias of β is larger than
the relative squared bias of τ , κi will decrease relative
to κx even when the instrument is not exogeneous. In
those cases when it is most critical to uncover endo-
geneity of the instrument, i.e. when the relative bias of
τ is large, κi will be larger than κx. In practice, this
implies that the proposed algorithm is prone to not de-
tecting the endogeneity of the instrument if the degree
of endogeneity is relatively small.

5. Next, to incorporate uncertainty about these metrics
in the subsequent decision, bootstrap over steps 1-
3 above. For each bootstrap sample b ∈ {1, . . . , B}
calculate

δb = κi,b − κx,b (9)

6. Calculate the share of samples with δb > 0,

δ1B =
1

B

B∑
b=1

1(κi,b > κx,b), (10)

δ1B can be interpreted as a pseudo-p-value for the
hypothesis

H0 : (κi > κx)⇔ the instrument is endogenous.
(11)

If δ1B is low, it is more likely that κi is, in fact,
smaller than κx (which indicates exogeneity of the in-
strument). The lower the pseudo-p-value, the more ev-
idence against the null. Therefore, the lower δB , the
more evidence against H0 : the instrument is endoge-
nous in favour of the alternative Ha : the instrument is
exogeneous. Implicit in this formulation of the test is
the assumption that the instrument is assumed endo-
geneous until proven otherwise.

7. Finally, I propose the following decision rule:

ψδ(α) = 1(δ1B ≤ α) =

{
1 =⇒ reject H0

0 =⇒ do not reject H0

(12)

that depends on threshold parameter α, which con-
trols the trade-off of committing Type I and Type II
errors.

Alternatively to the decision rule in (12), one can use
a paired-t-test for the null hypothesis in (11),

ψt(α) = 1(p-value of t-test < α). (13)

Note that each test relies on B = 200 bootstrap samples
on which the κs are estimated. Thus, the tests rely on
a set of B differenced κs.

Testing exogeneity It is conceivable to test the mir-
ror image of (10) by calculating the share of bootstrap
samples with δb ≤ 0,

δ̃1B =
1

B

B∑
b=1

1(κi,b ≤ κx,b), (14)

δ̃1B can then be interpreted as a pseudo-p-value for
the hypothesis

H̃0 : (κi ≤ κx)⇔ the instrument is exogenous (15)

with the following decision rule:

ψδ̃(α) = 1(δ̃1B ≤ α) =

{
1 =⇒ reject H̃0

0 =⇒ do not reject H̃0
(16)

Considering the difficulty of finding valid instru-
ments, assuming instrument endogeneity until proven
otherwise (ψδ) seems a more honest approach than as-
suming instrument exogeneity until proven otherwise
(ψδ̃). Therefore, we will stick to ψδ in the following.
Simulation results, which are not reproduced here, show



that a test based on ψδ̃ achieves similar AUC levels as
those described below for ψδ.

It is possible that resorting to ψδ̃ with the implied a
priori presumption of instrument exogeneity will prove
inevitable. Though this option seems less appealing due
to the elusiveness of convincing instruments, work is in
progress to construct an empirical distribution of the
test statistic under (15) by observing that the distribu-

tion of κi is similar to the one of κx under H̃0.

4 Monte Carlo Simulation
We consider the model in (1). In order to analyze the
effectiveness of the instrument exogeneity test, I gener-
ate data according to the following recipe.

This simulation setting extends the one proposed by
Huber and Mellace (2015) in that it considers covari-
ates in addition to the treatment variable of primary
interest. First, the simulation to study violations of
the exclusion restriction are presented; followed by the
simulation to study violations of the exchangeability as-
sumption.

4.1 Simulation Regime 1: Violation of
exclusion restriction

Let n-dimensional vectors of disturbances, U and ε, be
drawn from(

U
εT

)
∼ N

((
0
0

)
,

(
1 ω1

ω1 1

))
, (17)

and the instrument, Z, be generated by

Z ∼ Bernoulli(0.5). (18)

The set of covariates is generated by first populating a
n×d matrix Xtemp with random draws from a Gaussian
with mean zero and standard deviation one, N (0, 1).
Draw a random d-dimensional vector

βc,temp ∼ N (0, 1)

and, to keep simulations for various dimensions, d, com-
parable, set βc = βc,temp × ‖βc,temp‖−1

. With these
ingedients set

X = Xtemp + Uβ′c. (19)

To induce dependence of the treatment on the set of
covariates, first draw the d-dimensional vector βt,temp
populated with draws from a N (0, 1) and set βt =

βt,temp × ‖βt,temp‖−1
.

Further, generate treatment, T , as

T = 1(ω2Z + Xβ′t + εT > T ′). (20)

where T ′ is the mean of Xβ′t + εT .
Note that the binary nature of both treatment and

instrument represents a special and harder (for specifi-
cation testing) case than the setting with a continuous
treatment and instrument.

To simulate the outcome variable, I first gener-

ate a random vector β = (β1 . . . βd)
>

where each

β1, . . . , βd is drawn from a Gaussian N (0, 1). The true
coefficient of the treatment variable is set to τ = 1 to
facilitate the interpretation of deviations of the esti-
mated coefficients from that true value in subsequent
simulations.

Finally, generate outcome, Y , as

Y = Xβ + τT + ω3Z + U (21)

where ω3 controls the degree of violation of the exclu-
sion restriction.

4.2 Simulation Regime 2: Violation of
exchangeability assumption

For the simulations to test whether the algorithm can
detect endogeneity of the instrument stemming from a
violation of the exchangeability assumption, we replace
(18) with

Z = 1(εZ + ω3U > 0) (22)

where εZ is drawn from a standard Gaussian. There-
fore, ω3 controls the degree of violation of the exchange-
ability assumption. Finally, we replace (21) with

Y = Xβ + τT + U. (23)

4.3 Parameter constellations

An overview of the interpretation of the parameters is
provided:

• ω1: endogeneity of treatment, T

• ω2: relevance of the instrument, Z

• ω3: endogeneity of the instrument, Z

Call β̂nv the coefficient vector of a naive linear re-
gression of Y on {X, T}, which is biased due to the
endogeneity of T and the covariates.

Next, I use Z to instrument T . Following Adams et
al. (2009), I implement the IV strategy by first estimat-
ing a linear probability model (LPM) of T on {X, Z}.
Second, use the predicted T̂ in the second stage to esti-

mate β̂IV = (X>IV XIV )−1X>IV Y where XIV := {X, T̂}.
To show the empirical performance of the proposed

test, we implement Monte Carlo simulations for each
combination of the following parameters: number of
observations: n ∈ {500, 10000}, number of covariates:
d ∈ {3, 10} (one endogenous treatment variable: T ,
along with d−1 exogenous variables: X1, . . . , Xd−1), de-
gree of the endogeneity of T : ω1 = 0.8, degree of the rel-
evance of the instrument: ω2 ∈ {0.2, 0.6} degree of the
endogeneity of the instrument, Z: ω3 ∈ {0, 1/3, 2/3, 1}.
Moreover, the following parameters are fixed: number
of bootstrap samples B = 100, number of Monte Carlo
draws M = 100.

In order to gain deeper understanding of the perfor-
mance of the test, I also report the average difference
between the κs over all boostrap draws:

δB =
1

B

B∑
b=1

(κi,b − κx,b). (24)



Table 1: This Table shows the pseudo-p-value, δB, and
the empirical rejection probability, ψt (based on a α =
0.05) for various combinations of n and d. The source
of endogeneity for the instrument is a violation of the
exclusion restriction. When the number of observations
and dimensionality is sufficiently high (e.g. 10000 and
10 respectively), the test rejects the null of endogeneity
in 79% of the cases when, indeed, the instrument is
exogneous; and does not reject in any case when the
instrument is, indeed, endogeneous.

n d ω3 ω2 ω1 pseudo-p δB ψt

0.00 0.2 0.8 0.64 0.06 0.32

0.33 0.2 0.8 0.80 0.44 0.20

0.67 0.2 0.8 0.93 0.62 0.053

1.00 0.2 0.8 0.93 0.65 0.07

0.00 0.2 0.8 0.66 0.11 0.28

0.33 0.2 0.8 0.99 0.55 0.01

0.67 0.2 0.8 1.00 0.74 0.00

500

10

1.00 0.2 0.8 1.00 0.77 0.00

0.00 0.2 0.8 0.50 -0.24 0.47

0.33 0.2 0.8 0.80 0.51 0.19

0.67 0.2 0.8 0.85 0.57 0.153

1.00 0.2 0.8 0.93 0.64 0.07

0.00 0.2 0.8 0.20 -0.13 0.79

0.33 0.2 0.8 1.00 0.61 0.00

0.67 0.2 0.8 1.00 0.73 0.00

10000

10

1.00 0.2 0.8 1.00 0.73 0.00

5 Results of Monte Carlo Study

We begin the discussion with Simulation Regime 1, i.e.
simulated violations of the exclusion restriction. Fig-
ure 2 shows the evolution of the pseudo-p-value and
δB as a function of the degree of endogeneity of the
instrument. Both measures are increasing the the en-
dogeneity, which shows that they are picking up the
confoundedness signal in the data. The empirical rejec-
tion rate based on the pseudo-p-value (ψδ) is decreas-
ing as a function of the confoundedness, meaning that
the null hypothesis of endogeneity is not rejected as
the level of endogeneity is sufficiently large. Generally,
both a larger d and a larger n improve the visual per-
formance of the test. Increasing d, given n, tends to
improve performance by more than increasing n, given
d. This reflects the fact that the asymptotic results in
the original JS method rely on d going to infinity.

In order to evaluate the trade-off between making
Type I and Type II errors we calculate the area under
the ROC curve (AUC) and plot it as a function of the
endogeneity of the instrument, Figure 3 (cf. Appendix
B for details on the calculation). The AUC levels rise
with the degree of endogeneity of the instrument and
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Figure 2: This Figure shows the pseudo-p-value, δB,
and the empirical rejection probability (based on the
pseudo-p-value with threshold parameter α = 0.05) as a
function of the degree of instrument endogeneity where
the source of confounding is a violation of the ex-
clusion restriction, by number of covariates, (d, hor-
izontal), and number of observations (n, vertical). δB
rises sharply with the degree of confounding, as does
the pseudo-p-value. Consequently, the empirical rejec-
tion probabilities go down to zero indicating that, if the
degree of condounding is sufficiently high, the test does
not reject the null of endogeneity.

reach as high as roughly 0.95 for large numbers of ob-
servations and dimensions. Increasing the dimensional-
ity d leads to much larger AUC levels than increasing
the number of observations n. This is in line with the
asymptotic results in JS relying on d going to infin-
ity. It is noteworthy that the AUC levels tend to be
larger for a lower value of the degree of relevance of Z
(ω2). A larger ω2 implicitly goes along with a larger
complier rate. Huber and Mellace (2015) underscore
that “the absence of compliers maximizes the asymp-
totic power to find violations in IV validity” (p. 404);
in that sense the superior performance of the algorithm
as ω2 decreases mirrors this result. As ω2 increases,
i.e. the share of compliers grows, Z contains less and
less additional variation that can be leveraged by the
exogeneity test. In the extreme, Z and T collapse to
effectively one variable and the instrumented T does
not contain any different information than T . In other
words, the instrument cannot extract the experimental
variation of T (that part of the variation that is unre-
lated to U) when ω2 is too large. Nevertheless, even
for large ω2, the proposed test performs well with AUC
levels ranging from 0.6 (low degree of endogeneity of
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Figure 3: This Figure shows the area under the ROC
curve (AUC) as a function of the degree of instrument
endogeneity where the source of confounding is a vi-
olation of the exclusion restriction, for various
combinations of number of covariates, d, and number
of observations, n, by instrument relevance degree (ω2,
horizontal). Underlying test statistic is the pseudo-p-
value. The test achieves high AUC levels of close to the
perfect score of 1 for large n and d. Under a low ω2,
which translates into lower share of compliers, the test
performance increases.

instrument) to 0.8 (high degree of endogeneity). Table
1 shows results of the Monte Carlo simulations in table
form.

In Simulation Regime 2 we analyze whether the al-
gorithm can also detect an invalid instrument when its
invalidity stems from the fact that the exchangeability
assumption is violated. Figures 4 and 5 report results
for Simulation Regime 2 in the same form as previous
Figures for Simulation Regime 1. The performance of
the test decreases slightly. However, given sufficiently
many covariates and dimensions, the AUC reaches lev-
els around 0.95 when the degree of endogeneity of the
instrument is large.

Robustness to normalization An important char-
acteristic of the algorithm proposed by JS is that the
estimated κ is not robust to rescaling of the data as this
introduces a dependence between the covariance matrix
of the covariates and the parameter vector. The authors
acknowledge this, yet claim that the estimated κ is sur-
prisingly robust to rescaling of the data (a claim that
is vindicated in the case at hand). Nevertheless, this
lack of theoretical robustness of κ to rescaling the data
is the major reason why the test proposed in this paper
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Figure 4: This Figure shows the pseudo-p-value, δB,
and the empirical rejection probability (based on the
pseudo-p-value with threshold parameter α = 0.05) as a
function of the degree of instrument endogeneity where
the source of confounding is a violation of the ex-
changeability assumption, by number of covariates,
(d, horizontal), and number of observations (n, ver-
tical). δB rises (less sharply than in the case where
the exclusion restriction is violated) with the degree of
confounding, as does the pseudo-p-value. Consequently,
the empirical rejection probabilities go down to zero in-
dicating that, if the degree of condounding is sufficiently
high, the test does not reject the null of endogeneity.

does not rely on the size of a single κ, but rather on
the comparison of two κs which are both influenced by
rescaling in the same fashion, which one can therefore
expect to leave their relative size unaffected. Analyz-
ing such normalization theoretically will be subject of
future work.

6 Real-world application
Following Kitagawa (2015) and Huber and Mellace
(2015), we test the validity of proximity to a four-
year college as an instrument of educational attain-
ment to estimate returns to schooling, measured by log
of weakly earnings. This instrument is first proposed
by Card (1993). The author himself casts doubt on
the validity of college proximity as an instrument as
there might be factors such as family preferences or lo-
cal labour market conditions which might be related
to both the proximity to a college and the outcome
variable. Therefore, we follow Kitagawa (2015) Huber
and Mellace (2015) and present the results of the pro-
posed test for both the unrestricted sample as well as
for four subsamples: the group of white individuals,
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Figure 5: This Figure shows the area under the ROC
curve (AUC) as a function of the degree of instrument
endogeneity where the source of confounding is a viola-
tion of the exchangeability assumption, for vari-
ous combinations of number of covariates, d, and num-
ber of observations, n. Underlying test statistic is the
pseudo-p-value. The test achieves high AUC levels of
close to the perfect score of 1 for large n and d.

not living in the South is split into four groups based
on whether father’s education was above or below 12
years and whether residence was in a rural or urban
area.

The results in Table 2 show that the test rejects the
null of endogeneity in the full sample and all sub sam-
ples, when basing the decision on the t-test p-value.
However, the pseudo-p-values are in broad agreement
with the results in Huber and Mellace (2015). The test
only marginally rejects unconfoundedness for the full
sample. It shows a much lower pseudo-p-value for the
subgroups in lines 2-4. In line 5 (father’s education less
than twelve years and rural) the pesudo-p-value is rela-
tively high indicating that the null cannot be rejected.
The results in Huber and Mellace (2015) point in the
same direction in the sense that their test indicates en-
dogeneity of the instrument most clearly for the last of
the four subgroups.

These results indicate that the test presented here
suffers from a relatively high type I error (rejecting
instrument endogeneity although the instrument is in-
deed endogeneous) if the number of observations and
the degree of confoundedness is relatively small. This
behaviour can be seen in the Monte Carlo simulation in
Figure 2 (top left quadrant) where the empirical rejec-
tion probability only goes to zero relatively slowly.

7 Conclusion
The proposed method leverages subtle statistical traces
of confounding, measured by using the methodology
laid out in Janzing and Schölkopf (2018), to test

Table 2: This Table shows results of the empirical ap-
plication, based on Card (1995). As Card himself sus-
pects, the hypothesis of instrument exogeneity is rejected
for the full sample. There is some faint indication that
the exogeneity assumption is less violated in the subsam-
ple consisting of those individuals living in rural areas
and whose fathers’ have relatively low education.

group pseudo-p t-test p-val. δB
full sample 0.05 0 0.83

w.nS.feduc.12more.urban 0.02 0 0.81

w.nS.feduc.less12.urban 0.03 0 0.88

w.nS.feduc.12more.rural 0.01 0 0.60

w.nS.feduc.less12.rural 0.24 0 0.40

whether a potential instrument violates either the ex-
clusion restriction or the exchangeability assumption.
It relies on Schölkopf and Janzing’s insight that, un-
der certain assumptions, the spectral measure of the
covariance matrix of the independent variables in a lin-
ear regression can be decomposed into a causal and
confounded part. As such it provides a novel way to
approach the testing unconfoundedness, not only in in-
strumental variable models. As such, the decomposi-
tion of a spectral measure of the covariance matrix of
independent variables as a path towards understand-
ing the degree of confoundedness of a given variable of
interest opens promising future research avenues.

Extensive Monte Carlo studies show that the pro-
posed method has high accuracy. Its AUC levels reach
from around 0.7 when the number of observations, co-
variates, and the degree of endogeneity of the instru-
ment is low to levels close to 1 when the number of
observations, covariates, and the degree of endogeneity
of the instrument is high. These results prove robust
to the degree of relevance of the instrument and to nor-
malization of the data.

Another way of interpreting the results presented
here is that they constitute a data-driven aid for solving
the identification problem in causal studies. While ac-
knowledging the need to keep the multiple testing prob-
lem at bay, the method proposed here could be used to
search for instruments that fulfill the exclusion restric-
tion in increasingly available high-dimensional datasets.
In this sense, the current work is related to Sharma
(2016) and Sharma et al. (2016) who are proposing that
algorithmic search for exogeneous instruments can be
guided by comparing the marginal likelihood of valid
and invalid IV models in a Bayesian network setting.

Further research must address the performance of the
test with real data. In addition, finding ways to make
the estimation of the confounding strength κ robust
to rescaling and exploring how the proposed test can
be leveraged to automatically search for instruments
in high-dimensional data are promising research direc-
tions.
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Appendices

A Testing for the presence of a hidden
confounder

Janzing and Schölkopf (2018) propose a method to es-
timate the degree to which an observed statistical rela-
tionship between a multidimensional set of covariates,
X, and an outcome variable Y is due to the direct in-
fluence of X on Y or due to an unobserved confounder
influencing both X and Y . They point out that the
spectral measure of the covariance matrix of the (right-
hand side) independent variables, ΣXX, induced by the
parameter vector differs depending on whether there is
confounding or not. More precisely, the confounded-
parameter-induced spectral measure of ΣXX can be de-
composed into one parts: one that is due to the gen-
uine causal influence and a second that is due to the
confounding influence.

As a courtesy to the reader, I reproduce their method
here; this section does not contain new results. Com-
pared to JS, I have slightly changed the order of pre-
sentation as well as some notation to ensure consistency
with the main body of this paper.

A.1 The set-up

Consider the following linear model:

X = bu+ E

Y = X>a + cu> + ε
(25)

where Y is the n × 1 outcome vector, a is the d × 1
causal parameter vector of interest. X is a d×n matrix
of covariates. The confounder u is a 1 × n vector. b
is a d × 1 parameter vector. E is a d × n matrix of
standard normal errors drawn independently from u. ε
is a n× 1 vector of errors. Without loss of generality, u
is assumed to have unit variance.

By regressing Y on X, we obtain the biased param-
eter vector

â := Σ−1
XXΣXY (26)

where Σ denotes covariance matrices. Generally, we are
interested in the structural parameter vector a which
represents genuine causal influence. To illustrate, the
relation between a and â consider

ΣXY = Cov(X, Y ) = Cov(bu+ E,X>a + cu> + ε)

(27)

= (ΣEE + bb>)a + cb (28)

ΣXX = Cov(X,X) = Cov(bu+ E,bu+ E) = ΣEE + bb>

(29)

and therefore

â = a + (ΣEE + bb>)−1cb = a + cΣ−1
XXb. (30)

A.2 Genericity assumptions

The underlying idea, which this method rests on, is the
Independence between Cause and Mechanism (ICM)

postulate Janzing et al. (2012), which states that the
causal mechanism, which translates cause into effect, is
independent of the cause. Intuitively, the mechanism is
indifferent as to which ‘level of the cause’ it translates
into an effect.

To understand what the ICM amounts to in the case
at hand, note that the cause is represented by ΣXX,
likewise the mechanism is represented by a. There-
fore, Janzing and Schölkopf (2018) postulate that a lies
in ‘generic orientation’ relative to ΣXX. For instance,
since a is chosen independently of X, and, thus, also
the covariance matrix ΣXX, a is not likely to be aligned
with its first principal component.4

In order to make the notion of ‘generic orientation’
more precise, we require some definitions. First of all,
assuming that all eigenvalues of a matrix are different
from each other (ie. the matrix non-degenerate), we can
recall that each such symmetric matrix A has a unique
decomposition

A =

d∑
j=1

λjφjφ
>
j (31)

where λj denotes the eigenvalues and φj the corre-
sponding normalized eigenvectors.

The renormalized trace is defined to be

τ(A) :=
1

d
tr(A) (32)

for A a d × d matrix (note that the τ in this notation
is unrelated to the treatment effect which it denotes in
the main body of the paper).

Definition A.1. (tracial spectral measure) Let A be a
real symmetric matrix with non-degenerate spectrum.
The tracial spectral measure of A is defined as the uni-
form distribution over its eigenvalues λ1, . . . , λd:

µτA :=

d∑
j=1

δλj
. (33)

The tracial spectral measure is a property of a matrix.
The vector-induced spectral measure complements the
tracial spectral measure by accounting for its relation
to an arbitrary vector.

Definition A.2. (vector-induced spectral measure)
Given a symmetric matrix A with associated eigenval-
ues λj and corresponding eigenvectors φj , the spectral
measure induced by an arbitrary vector ψ ∈ Rd is given
by

µA,ψ =

d∑
j=1

(
ψ>φj

)2
δλj . (34)

Intuitively, µA,ψ describes the “squared length of
components of a vector projected into the eigenspace

4To be precise, for the structural model in (25), the argu-
ment involves a generic orientation of a and the eigenspaces
of ΣXX.



of [ΣXX]” (Liu and Chan, 2018). Note that the vector-
induced spectral measure of a matrix can be represented
by two vectors: one which represents the support of
the spectral measure, ie. a list of the eigenvalues in de-
creasing magnitude and a second composed of weights
corresponding to the eigenvalues. For tracial spectral
measures the weight vector is w = (1/d, . . . , 1/d) repre-
senting the uniform distribution over the eigenvalues.

Given these definitions, the precise meaning of
‘generic orientation’ is formalized in the following pos-
tulate.

Postulate 1: generic orientation of vectors.
Given the structural model in eq. (25) and a large d,
one can define ‘generic orientation’ as:

1. Vector a has generic orientation relative to ΣXX in
the sense that

µΣXX,a ≈ µτΣXX
||a||2 (35)

2. Vector b has generic orientation relative to ΣEE in
the sense that

µΣEE,b ≈ µτΣEE
||b||2. (36)

3. Vector a is generic relative to b and ΣEE in the sense
that

µΣXX,a+cΣ−1
XXb ≈ µΣXX,a + µΣXX,cΣ

−1
XXb. (37)

Intuitively, (35) states that ‘decomposing a into eigen-
vectors of ΣXX yields weights that are close to being
uniformly spread over the spectrum.’ (36) captures
a similar statement for b and ΣEE: the weights of b
are uniformly distributed across the spectrum of ΣEE

(Janzing and Schölkopf, 2018).
Eq. (37) contains a crucial ingredient for the ability

to detect confounding: the â-induced spectral measure
(left-hand-side of (37), recall â = a+cΣ−1

XXb) can be de-
composed into one part due to the causal vector a (first
summand) and a second part due to the confounding
(second summand).

Note that the justification of these definitions de-
pends on an idealized generating model (as defined in
Section 2.3 of Janzing and Schölkopf, 2018). For this
idealized model, the authors derive asymptotic results
such that the three definitions (35), (36), (37) hold with
equality.

A.3 Quantifying confounding
Two indicators for confounding strength are proposed:
i) a correlative, and ii) a structural indicator.

Definition A.3. (correlative strength of confounding)
The correlative strength of confounding gives the degree
to which the confounder contributes to the covariance
between X and Y .

γ :=
‖ΣXZ‖2

‖ΣXY ‖2 + ‖ΣXZ‖2
(38)

The following indicator for confounding strength,
which measures the deviation of the estimable â from
the genuine causal parameter b, is proposed

Definition A.4. (structural strength of confounding)

κ : =

∥∥Σ−1
XXΣXu

∥∥2∥∥Σ−1
XXΣXY

∥∥2
+
∥∥Σ−1

XXΣXu

∥∥2

=

∥∥cΣ−1
XXb

∥∥2

‖a‖2 +
∥∥cΣ−1

XXb
∥∥2 ∈ [0, 1]

(39)

Note that from (37) and a normalizing condition

µA,ψ(R) = ‖ψ‖2

(eq. (10) in Janzing and Schölkopf (2018)), we know

‖â‖2 ≈ ‖a‖2 +
∥∥cΣ−1

XXb
∥∥2

. Therefore, one can rewrite
κ as

κ ≈
∥∥cΣ−1

XXb
∥∥2

‖â‖2
. (40)

In words, κ is the share of the influence of u on X of
the overall strength of the association between Y and
X. Another interpretation: κ is the deviation of â from
a relative to the sum of squared lengths of these vectors.

Note that the contribution of u to the covariance be-
tween X and Y is determined by the product cb. As
a consequence, rescaling c by some factor and b by its
inverse leaves γ unaffected. Similarly, (a more sophis-
ticated) rescaling of c and b leaves κ unaffected. The
regimes with (i) large c and small b and with (ii) small
c and large b can be thought of as two extremes on
a continuum where knowing the value of u (i) hardly
reduces the uncertainty about X or (ii) significantly re-
duces the uncertainty about X. To capture these differ-
ent regimes, JS propose an additional parameter that
measures the explanatory power of u for X,

η := tr(ΣXX−tr(ΣXX|u)) = tr(ΣXX)−tr(ΣEE) = ‖b‖2 .
(41)

A.4 Estimating confounding

Loosely, the general idea of the algorithm is as follows.
The vector-induced spectral measure of ΣXX w.r.t. â
can be approximated by a normalized measure, νκ,η,
which decomposes into a causal part and a confound-
ing part. The relative shares of causal and confound-
ing parts in that decomposition is given by κ. The
algorithm proceeds by finding the normalized measure
most similar to (computable) µΣXX,â. The parameter
constellation that minimizes the distance tells us the
relative confounding strength.

How do they do that? They show that µΣXX,â asymp-
totically depends on four parameters: ΣXX, â, κ, and
η (two of which, ΣXX and â, can be computed). Based
on this insight, they formalize a two-parametric family
of probability measures νκ,η such that, with high prob-
ability, it converges to µΣXX,â as the dimensionality of
X increases (up to a normalizing factor):

1

‖â‖2
µΣXX,â − νκ,η → 0 (weakly in probability) (42)



where

νκ,η := (1− κ) νcausal + κ νconfounded
η . (43)

We inspect each part in turn.

1. νcausal is the hypothetical spectral measure that
would be obtained in the absence of confounding.
Following (35), it is defined as

νcausal := µτΣXX
(44)

since, in the absence of confounding, the spectral
measure induced by a should be equivalent to the
tracial spectral measure of ΣXX (up to a normalizing
factor). This part can be estimated easily since X is
observed.

2. To define the corresponding confounding part, JS
propose an approximation to the spectral measure
of ΣXX induced by the vector Σ−1

XXb. Recall that b
has generic orientation relative to ΣEE, cf. eq. (36).
However, both b as well as ΣEE are unknown. These
two unknowns correspond to two steps that are im-
portant for constructing this approximation.

Before looking at these two steps, it is worthwhile
emphasizing the two critical assumptions used: first,
by virtue of the properties of the generating model
we have ΣXX = ΣEE + bb>; second, b has generic
orientation w.r.t. ΣEE.

(a) The eigen decomposition of ΣEE reads QMEQ
−1

where ME := diag(λE1 , . . . , λ
E
d ) with λE1 > · · · >

λEd eigenvalues of ΣEE. Though we do not know b,
we know that it is generic relative to ΣEE. There-
fore, we can replace b with a vector that is ‘partic-
ularly generic’, namely g := (1, . . . , 1)>/

√
d, which

satisfies
µME ,g = µτME

.
Therefore, one can approximate the spectral mea-
sure of ΣXX induced by the vector Σ−1

XXb by spec-
tral measure of ME + ηgg> induced by (ME +
ηgg>)

√
ηg. This construction is still not feasible

as ME , which contains the eigenvalues of ΣEE, is
unobserved.

(b) JS resort to a result stating that spectral measures
are close in high dimensions:

µτΣXX
≈ µτΣEE

,

cf. their Lemma 4. Therefore, one can approxi-
mate ME with MX = diag(λX1 , . . . , λ

X
d ) and λX1 >

· · · > λXd eigenvalues of ΣXX.

Putting these two steps together, JS define a rank-
one perturbation of MX as

T := MX + ηgg>,

compute the spectral measure of T induced by vector
T−1g, and define

νconfounded
η :=

1

‖T−1g‖2
µT,T−1g. (45)

For clarity, it is useful to reiterate what has been
achieved in Step 2: first, ΣEE + bb> can be approxi-
mated by ME +ηgg>. Second, (ΣEE +bb>)−1b can
be approximated by (ME + ηgg>)−1√ηgg>.

A.5 Algorithmic implementation

The algorithm finds κ by taking that element in νκ,η
that is closest to µΣXX,â. Since eq (42) only asserts
weak convergence in probability, computing l1 or l2 dis-
tance is inappropriate. Therefore, JS propose smooth-
ing the spectral measures using a Gaussian kernel.

Thus the difference between vectors w and w′ is given
by

D(w,w′) := ‖K(w − w′)‖1 (46)

with

K(λi, λj) := exp
(
− (λi − λj)2

2σ2

)
Finally, the algorithm finds the κ that minimizes

D(w,wκ,η) where w is the weight vector correspond-
ing to the (computable) spectral measure µΣXX,â and
wκ,η is the weight vector corresponding to the νκ,η.

B ROC curves
ROC curves are an insightful way to evaluate the perfor-
mance of a binary classifier (exogenous vs. endogenous
instrument, in the case at hand) that plots the share of
true positive (TP) decisions as a function of the share
of false positive (FP) decisions. Thereby, it shows the
trade-off between Type I and 1− Type II errors of the
test, ie. rejecting H0 although it is true and rejecting
H0 when it is indeed false. The curve is traced out
by varying a threshold parameter α. The false positive
rate is calculated as the share of false positive decisions,
ie. rejections of H0, across M Monte Carlo draws in
which H0 is in fact true (ie. the instrument endoge-
neous). Similarly, the true positive rate is calculated
as the share of true positive decisions across all Monte
Carlo draws in which H0 is actually false (ie. the in-
strument exogeneous):

FP(α) =
1

M

M∑
m=1

ψδ,m(α) when ω3 6= 0

TP(α) =
1

M

M∑
m=1

ψδ,m(α) when ω3 = 0.

(47)

The ROC curve plots the TP rate as a function of the
FP rate. The further the curve lies above the forty-five
degree line, the better the test. The area under the
ROC curve (AUC) is a measure for the accuracy of the
test and ranges between 0.5 (useless classifier that does
just as good as chance) and 1 (perfect accuracy).
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