
Learning Causal Trees with Latent Variables via Controlled Experimentation

Prasad Tadepalli
Oregon State University
Corvallis, Oregon, 97331

Cameron Barrie
Oregon State University
Corvallis, Oregon, 97331

Stuart J. Russell
University of California

Berkeley, California, 94720

Abstract

Learning causal knowledge often requires interventional ex-
periments due to the non-determinacy of causality. In this
paper we motivate the need for experiments from the per-
spective of computational tractability when there are latent
variables. We present a polynomial-time controlled experi-
mentation algorithm to learn the parameters of a known tree
structured causal network when all nodes but the root and the
leaves are latent and only the leaves are controllable. Our em-
pirical results on several synthetic datasets show the superior-
ity of algorithmic experimentation compared to other passive
approaches such as neural network learning.

Introduction
Structural causal Models (SCMs) are attractive models of
causality with intuitive semantics and mathematical rigor.
It is well known that learning the structure of causal net-
works often requires interventional experiments, as the ob-
servational data alone cannot identify the true causal struc-
ture from its Markov equivalence class (Pearl 2009; Spirtes,
Glymour, and Scheines 2000; Reichenbach 1991). There
have been several approaches to learn the structure of the
causal networks by combining observational and interven-
tional data (Cooper and Yoo 1999; Peters, Bühlmann, and
Meinshausen 2016; Silander and Myllymaki 2012; Eaton
and Murphy 2007). There are also some sophisticated ap-
proaches that actively design optimal experiments to learn
the structure of the network (He and Geng 2008). In re-
cent work, optimal active learning strategies for identi-
fying causal network structures with minimal number of
single-node and multi-node interventions have been studied
(Hauser and Bühlmann 2014).

There has been considerable work on learning the struc-
ture of SCMs in the presence of latent variables includ-
ing IC* (Pearl 2009), FCI (Spirtes, Glymour, and Scheines
2000), and RFCI (Colombo et al. 2012). Recent methods
have explored the use of path queries (Bello and Hono-
rio 2017), experimental design (Kocaoglu, Shanmugam, and
Bareinboim 2017), and constraint satisfaction to learn the
structure (Hyttinen et al. 2013). In this work, we address
the complementary problem of efficiently learning the pa-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rameters of a network with a known structure in the pres-
ence of a large number of latent variables. Previous work on
learning the parameters of Bayesian networks are based on
expectation maximization and gradient descent (Binder et
al. 1997), a variety of imputation methods and others such
as robust Bayesian estimator (Ramoni and Sebastiani 2001).
However, none of these approaches make any formal guar-
antees of performance. Indeed, it appears that learning in
the presence of latent variables is intractable without exper-
iments, which is not considered by these methods.

We consider the problem of learning the parameters of a
structural causal model (SCM) from observations and ex-
periments in the framework of PAC-learning of probabilistic
concepts or P-concepts (Kearns and Schapire 1994). This
framework assumes that the inputs are generated from a nat-
ural distribution, and the goal is to learn, with a high prob-
ability, an approximate conditional distribution of the tar-
get variable given the inputs. In PAC-prediction, the learner
is allowed to express the target function in any polynomi-
ally evaluatable representation equivalent to the target con-
cept. Thus PAC-learning of a concept is in general a harder
problem than PAC-prediction as the learner has greater free-
dom to represent its target. When all variables are Boolean,
and the CPTs are deterministic, an SCM is equivalent to a
Boolean circuit. Unfortunately PAC-prediction of Boolean
circuits from random examples is cryptographically hard,
i.e., as hard as solving cryptographic problems such as inte-
ger factoring (Pitt and Valiant 1988). Surprisingly, the prob-
lem remains hard even when the circuit is tree-structured and
the structure of the tree is given (Pitt and Warmuth 1990).
Since probabilistic Boolean SCMs, where only the inputs
and the final output of the SCM are observed, generalize
Boolean circuits, it follows that learning them is as hard as
factoring. Just as in the Boolean circuits, the hardness re-
mains even when the SCM has a known tree structure.

It was previously shown that the functions that correspond
to the latent internal nodes of a tree structured deterministic
Boolean circuit can be learned from random examples and
membership queries (Tadepalli and Russell 1998). A mem-
bership query asks the output of the circuit for any given
input. Interestingly both membership queries and the ran-
dom examples are needed for learning to be successful. On
the other hand, deviations from the tree structure make the
problem cryptographically hard even when both random ex-

amples and membership queries are allowed. In this paper,
we extend this previous work to probabilistic setting and
show that rooted probabilistic causal trees can be efficiently
learned from observational and experimental data.

While there have been many approaches to learning
causal networks that employ a combination of observational
and experimental data, in many cases, the experiments are
offline and predetermined, which limits them to be small in
number and non-adaptive. Previous work in active learning
of Bayesian networks also explored the idea of experimenta-
tion where the relevant variables to be intervened are picked
using greedy heuristics such as structure entropy and ex-
pected posterior loss over a query distribution (Li and Leong
2009; Tong and Koller 2001; He and Geng 2008). In con-
trast, we study the problem of algorithmic experimentation
with provable guarantees, where the experiments are se-
lected by the algorithm automatically for the specific infor-
mational need of learning. Also unlike the model of learning
from membership queries where each query returns a label,
each experiment in our setting returns the conditional prob-
ability distribution of output given the input.

The root of the tree represents the target variable whose
value we are interested in predicting and the leaves of the
tree represent the input variables whose values can be di-
rectly set or controlled by the algorithm. The causality flows
from the leaf nodes to the root node, i.e., from the input vari-
ables to the target. Following the terminology of causal net-
works, we call the causal antecedents of a node, its parents,
rather than its children as is normally referred to in the tree
literature. We assume that the tree-structure of the network is
given and the conditional probabilities at each node are rep-
resented explicitly in the form of tables. Learning the con-
ditional probability tables (CPTs) is straightforward if we
observe all nodes in the tree. What makes the problem diffi-
cult and interesting is that only the root and the leaves of the
tree are observable and the rest of the nodes are latent.

Our top level algorithm is similar to that of (Tadepalli and
Russell 1998) and is inspired by the idea of “controlled ex-
perimentation” in science. The algorithm, called Control-
Exp, creates an appropriate context – or experimental set-
ting – that controls a latent variable and observes its effect
on another variable. The result of the “experiment” is a con-
ditional probability of the target variable given the input.
While in the real world, the experiment will have to be re-
peated many times to estimate the probability, it is directly
computed from synthetic causal models in our experiments.

The results show that our algorithm robustly and ac-
curately learns the target models from a combination of
random examples and automatically designed experiments.
Deep neural networks trained on the same data or on the
same amount of randomly generated data fail to learn as
well. We believe that it strongly suggests the need for learn-
ing algorithms that exploit the known domain structure and
adaptively design and conduct their own experiments.

Problem Setup
A Structural Causal Model (SCM) is a 4-tuple (V,D,G, P),
where V is a set of random variables over the domain D, G
is a directed acyclic graph over V , and P is the conditional

distribution of variables Vi ∈ V given the values of their
parents (causal antecedents) Pa(Vi) inG. A Tree-structured
causal network or causal tree is an SCM in the form of a
rooted tree, where the root represents the only target variable
and the direction of causality is from the leaf nodes that rep-
resent the input variables to the root. Recall that we reverse
the usual convention of parent-child relationship in trees to
be consistent with the terminology of causal networks. In
particular we assume that each node has a single child and
has multiple parents which are its causal antecedents.

We assume that only the input variables and the target
are observable. The rest of the variables, called the internal
nodes, are latent. We often use the word ‘node’ to mean the
variable represented at that node. In this work, we assume
that the tree structure of an SCM, i.e., V andG are given and
seek to learn the probability model P (.|Pa(.)). We restrict
ourselves to the Boolean domain for all our variables, which
allows P to be represented by a conditional probability ta-
ble (CPT) given by P (Vi = 1|Pa(Vi)) for each variable Vi.
The CPT has one entry for every possible value tuple of the
parents of Vi. The generative process of the SCM induces a
conditional distribution P (target= 1|input= x), abbrevi-
ated as P (target|x), which we seek to learn from examples.

We assume that the inputs x are generated from a natural
distributionD(x). Following the PAC framework of (Kearns
and Schapire 1994), we seek an ε−γ-approximate probabil-
ity model of P , which is a model P̃ that guarantees that
Prx∈D[|P (target|x) − P̃ (target|x)| > γ] ≤ ε. Learn-
ing algorithms find such models by considering a hypoth-
esis space H of possible models and returning a hypothesis
h ∈ H with the least empirical loss on a sufficiently large set
of labeled samples. The PAC-learning theory of (Kearns and
Schapire 1994; Haussler 1992) and others (Pollard 1984)
define a combinatorial measure called pseudo-dimension d
for the hypothesis space where a sample size polynomial in
d, 1/ε, 1/γ, and 1/δ is sufficient to guarantee that any hy-
pothesis that minimizes the empirical loss on the sample is
going to be an ε−γ-approximation of the true model with
probability 1 − δ. The pseudo-dimension of the hypothesis
space of Bayesian networks of a given structure is given by
the sum of the sizes of all its CPTs, i.e., n2k, where n is
the number of nodes and the degree k is an upper bound on
the number of parents of any node (Dasgupta 1997). Hence
causal trees of small degree have low sample complexity.

Turning now to the time complexity of learning, in pre-
vious work it is shown that the parameters of determin-
istic causal trees with known structure can be learned in
polynomial-time when both random examples and mem-
bership queries are available (Tadepalli and Russell 1998).
Both random examples and membership queries are neces-
sary for successful learning. Without membership queries
the problem is equivalent to learning arbitrary Boolean func-
tions from random examples, which is cryptographically
hard (Pitt and Valiant 1988). Without random examples, the
trees can encode arbitrary passwords so that it takes expo-
nentially many guesses to get any useful information in the
worst case.

The goal of this paper is to generalize the above result to

that of learning ε−γ approximate models of causal trees from
random observational examples (x, P (target|x)) where x
is chosen according to the natural distribution D, and ex-
perimental queries EXP(x) which are responded with the
conditional probability P (target|x) for any x. The learning
algorithm works by drawing a sufficiently large sample of
random examples, and then using the experimental queries
around these examples to find the least loss causal tree con-
sistent with the data. The crux of the problem is to do this
in a way that only takes time polynomial in the size of the
target tree and the size of the random sample.

Control Normal Form of Causal Trees
In this section, we show that the conditional probability ta-
bles of causal trees with latent internal nodes can be trans-
formed into a special normal form which will be exploited
by our learning algorithm.

Definition 1 A causal tree is in control normal form (CNF)
if for every internal variable Vi ∈ V , there are some values d
for its parents such that P (Vi=1|Pa(Vi)=d)=1 and some
other values z for its parents such that P (Vi =1|Pa(Vi) =
z)=0.

In a causal tree in a control normal form, there are inputs
that can deterministically set any internal variable to 0 or 1.
We can find these inputs by choosing appropriate values for
each parent of the internal node to set it to 0 or 1 and recurs-
ing over the parents to do the same. For any internal node n
of a target tree in CNF, let d(n) be the input assignment for
its leaf nodes that deterministically sets the node to a value
of 1. Similarly let z(n) set its value to 0. We call the dual
inputs z(n) and d(n) the control inputs of i. We will now
consider the problem of transforming any given causal tree
to CNF.

Definition 2 The weighted average of S and T with respect
to w, denoted by A(w, S, T), is (1− w)S + wT .

The following lemma is useful to justify the normalization
algorithm.

Lemma 1 Let 0 ≤ lo ≤ w ≤ hi ≤ 1. Then,
A(w−lohi−lo , A(lo, S, T), A(hi, S, T)) = A(w, S, T).

Proof: A(w−lohi−lo , A(lo, S, T), A(hi, S, T))

= (1− w−lo
hi−lo)A(lo, S, T) +

w−lo
hi−loA(hi, S, T)

= hi−w
hi−lo ((1− lo)S + loT) + w−lo

hi−lo ((1− hi)S + hiT)

= (hi−lo)−w(hi−lo)
hi−lo S + hi−lo

hi−lowT

= (1 − w)S + wT = A(w, S, T) � Table 1 describes
the algorithm “Normalize” that converts any rooted tree-
structured causal network to its normal form. The algorithm
starts from the leaf CPTs and proceeds toward the root. In
the algorithm, we let P and P ′ denote the old and new en-
tries in the CPTs respectively. In Table 1 and elsewhere, we
assume Pa(n) represents the parents (direct causes) of n, ni
is ith parent of n, and ni is the set of all co-parents of ni.
i.e., parents of n other than ni. Let z be a vector of 0s and
1s of appropriate dimensions. Step 2 of the algorithm lin-
early rescales the probability tables of ni so that the lowest
probability lo maps to 0 and the highest probability hi maps

1. Pick an internal node ni, which is a parent of n, where all
its parents are leaves or have already been normalized.

2. Let the smallest probability in the CPT of ni be lo, and
the highest probability be hi. Replace the entries in the
CPT of ni as follows.
P ′(ni=1|Pa(ni) = z)← P (ni=1|pa(ni)=z)−lo

hi−lo .

3. Change the CPT of n as follows. Here y is an assignment
of 0s and 1s to co-parents of ni, i.e., nodes in ni.
P ′(n=1|ni=0, ni=y)←
A(lo, P (n=1|ni=0, ni=y), P (n=1|ni=1, ni=y))

P ′(n = 1|ni=1, ni=y)←
A(hi, P (n=1|ni=0, ni=y), P (n=1|ni=1, ni=y))

Table 1: The Normalize procedure repeatedly executes
steps 1-3 by picking nodes in bottom-up manner.

to 1. Every other probability w maps to w−lo
hi−lo . Step 3 com-

pensates for this change at node n by adjusting its CPT with
respect to node ni. Lemma 2 shows that the compensation
preserves the distribution of n for any values of its children.

Lemma 2 Consider a rooted tree-structured causal net-
work for which Normalize has been applied at node ni.
Then for any vectors x and y of appropriate dimensions,
P (n=1|Pa(ni)=x, ni= y) = P ′(n=1|Pa(ni)=x, ni=
y)

Proof:
P (n=1|Pa(ni)=x, ni=y)

= P (ni=1|Pa(ni)=x, ni=y)
P (n=1|ni=1, Pa(ni)=x, ni=y)
+ P (ni=0|Pa(ni)=x, ni=y)
P (n = 1|ni=0, Pa(ni)=x, ni=y)

= P (ni=1|Pa(ni)=x)P (n=1|ni=1, ni=y)
+ (1− P (ni=1|Pa(ni)=x))P (n=1|ni=0, ni=y)

= A(P (ni=1|Pa(ni)=x), P (n=1|ni=0, ni=y),
P (n=1|ni=1, ni=y))

= A(P (ni=1|Pa(ni)=x)−lo
hi−lo ,

A(lo, P (n=1|ni=0, ni=y),
P (n=1|ni=1, ni=y)),

A(hi, P (n=1|ni=0, ni=y),
P (n=1|ni=1, ni=y)))

= A(P ′(ni=1|Pa(ni)=x), P ′(n = 1|ni=0, ni=y),
P ′(n=1|ni=1, ni=y))

= P ′(ni=1|Pa(ni)=x)P ′(n=1|ni=1, ni=y)
+(1−P ′(ni=1|Pa(ni)=x))P ′(n=1|ni=0, ni=y)

= P ′(n = 1|Pa(ni)=x, ni=y) �

Since each transformation at ni preserves the conditional
probability P (n|Pa(ni), ni), a sequence of such transfor-
mations at each ni preserves it as well. Repeating this argu-
ment for each internal node n in bottom-up manner shows
that the probability of the target given any input is preserved.
The following theorem formalizes the argument.

Theorem 1 Let P ∗ be the probabilities that result by do-
ing the above transformation on all hidden nodes in bot-
tom up manner on a rooted tree-structured Bayesian net.

Let z be any binary vector the leaf nodes are set to. Then,
P (target|z) = P ∗(target|z).
Proof: We show that each transformation preserves the
above conditional probability. By induction it follows that it
is preserved by a sequence of transformations.

P (target|z) =∑
w P (target|n=w, z)∑
x,y P (n=w|Pa(ni)=x, ni=y)
P (Pa(ni)=x|z)P (ni=y|z)

Note that none of the three values – P (target|n=w, z),
P (Pa(ni) = x|z), and P (ni = y|z) – change as a result
of changing the CPTs of nodes n and ni. By Lemma 2, the
changes at nodes n and ni are such that P (n=w|Pa(ni)=
x, ni=y) is preserved for w=1 or 0. Hence the value of the
whole expression is preserved. �

For example, consider the 4-input tree-structured causal
network in Figure 1. We assume all variables are Boolean
valued. Only the input variablesD,E, F,G at the leaf nodes
and the target A at the root are observable. B and C are la-
tent. The figure shows how the CPTs of A, B, and C are
transformed to normalize the causal network and preserve
the distribution P (A|D,E, F,G). For example, the notation
0.3/0 on node B indicates that the P (B = 1|D = 0, E =
0, F = 1, G = 0) = 0.3 before normalization and 0.0 after
normalization. The conditional probability of node C simi-
larly changes from 0.1 to 0. The conditional probability of
A on the other hand remains the same as before at 0.36.

B C

GFED

A=1 C=0 C=1

B=0 .4 .3

B=t .3 .2

B=1 E=0 E=1

D=0 .3 .7

D=1 .6 .9

B=1 E=0 E=1

D=0 0 .67

D=1 .5 1

C=1 G=0 G=1

F=0 .2 .9

F=1 .1 .7

A=1 C=0 C=1

B=0 .36 .28

B=t .3 .22

C=1 G=0 G=1

F=0 .125 1

F=1 0 .75

1 00 0

0.3/0 0.1/0

0.36

A

Figure 1: CPT normalization. The CPTs show the probabil-
ity that a variable = 1, given its parents. After normalization
both B and C have a 0 and a 1 in their CPTs. The figure
shows the probabilities of different variables given an input
before and after normalization.

The Learning Algorithm
Given that any target causal tree can be put in CNF, we seek
to learn a tree in CNF and call it the target tree. Recall that
for trees in CNF, every internal node n has control inputs
d(n) and z(n) to its leaves that set it to 1 and 0 respectively.
In addition, if there is also an input context, i.e., an assign-
ment to the input variables other than the leaves of n, that

makes this internal node have an impact on the distribution
of the target variable, we call the node distinguishable. Dis-
tinguishability allows us to infer the distribution of the la-
tent internal node from the distribution of the target variable
when the node’s context is set appropriately. If a node is not
distinguishable, it has little impact on the target distribution
for any input, and hence can be permanently set to a constant
value, significantly simplifying learning.

Formally, a node n is γ-distinguishable if there is an as-
signment c(n) to the inputs other than the leaves of n, called
the “context input” of n such that |P (target|d(n), c(n)) −
P (target|z(n), c(n))| > γ. In this case we assume
P (target|c(n), n = 1) > P (target|c(n), n = 0) so
that P (target|c(n), d(n)) > P (target|c(n), z(n)). This is
w.l.o.g. since the internal nodes are latent, which allows re-
defining 0 and 1 values for them.

We describe our algorithm in three stages. First observing
a distinguishable node, second filling in the CPT of a distin-
guishable node whose parents are also distinguishable, and
third finding the distinguishable assignments. We then put it
all together as a top-down recursive algorithm.

Inferring the distribution of a distinguishable node
Suppose n is a distinguishable node with control inputs d(n)
and z(n) and context input c(n). Let y(n) represent some
assignment to the leaf (input) nodes under the subtree rooted
at node n. The following suggests how we might infer the
conditional distribution of n given y(n) from the conditional
distribution of the target given y(n) and c(n).
P (target|y(n), c(n))=
P (target|y(n), c(n), n=1)P (n=1|l(n)=y)
+P (target|y(n), c(n), n=0)(1− P (n=1|y(n)))
= P (target|d(n), c(n), n=1)P (n=1|y(n))
+P (target|z(n), c(n))(1− P (n=1|y(n)))

From the last equation, it follows that

P (n=1|y(n)) = P (target|y(n),c(n))−P (target|z(n),c(n))
P (target|d(n),c(n))−P (target|z(n),c(n)) .

We can implement this by using the EXP oracle that
returns the probability of the target for various inputs. In
particular, we have:

P (n=1|y(n)) = EXP (y(n),c(n))−EXP (z(n),c(n))
EXP (d(n),c(n))−EXP (z(n),c(n)) .

The above shows that finding the context and control in-
puts would make a latent node effectively observable and
controllable. If a node is not distinguishable, it means that
it has no impact on the target, and hence can be effectively
ignored by setting it to a constant function, say 0.

Filling in the CPT of a distinguishable node
Assuming that n and its parents are distinguishable with
known context and control inputs, it is straightforward to
fill in the CPT of n using appropriate experimental queries.
We consider each possible assignment vector x to the par-
ents of node n, where xi is the bit we would like to assign
to the ith parent ni. To fill in P (n=1|Pa(n)=x), for each
parent ni of n, set its leaf inputs y(ni) according to d(ni) if

Algorithm 1 ControlExp
1: Procedure LearnTree(S, n, c(n))
2: for each parent ni of n do
3: find c(ni), d(ni), z(ni) using S
4: hi← EXP(d(ni), c(ni))
5: lo← EXP(z(ni), c(ni))
6: end for
7: for each tuple of values x for the parents of n do
8: for each distinguishable parent ni of n do
9: if xi=1 set inputs y(ni)← d(ni)

10: else set inputs y(ni)← z(ni)
11: end for
12: w = EXP(y(n1), . . . , y(nk), c(n))
13: P (n = 1|Pa(n) = x)← w−lo

hi−lo
14: end for
15: for each distinguishable parent ni of n do
16: call LearnTree(S, ni, c(ni))
17: end for
18: End LearnTree

Table 2: The learning algorithm recursively finds the distin-
guishing assignments of each node and learns its CPT in top
down fashion.

xi = 1, and to z(ni) if xi = 0. If ni is not distinguishable,
its leaves y(ni) are set according to z(n). We set the context
of n according to its context input c(n). We use the previous
equation to infer the distribution P (n = 1|y(n), c(n)) and
assign it to the CPT entry P (n=1|Pa(n) = x).

Finding control and context inputs
We now describe the crucial step of finding the control in-
puts d(n) and z(n) and the context input c(n) for any node
n. It is here that we need random example set S chosen ac-
cording to the natural distribution D. Without random ex-
amples from a natural distribution, the search for control and
context inputs will have to be exhaustive and impractical.

For any random example x and internal node n, let
xn be the part of the input at the leaves of node n
and xni be the input under all parents of n other than
ni. To find c(n), we find an x ∈ S which maximizes
the absolute difference between P (target|xn, c(n)) and
P (target|z(n)ni

, c(n), xni
), where z(n)ni

is the part of
the control input z(n) of node n which is under the
node ni. If this difference is greater than a small thresh-
old γ, we set c(ni) to xni

. If it is not, we conclude
that the node ni is not distinguishable. Finally, we set
d(ni) = argmaxx∈S P (target|xni , c(ni)) and z(ni) =
argminx∈s P (target|xni , c(ni)) to achieve maximum dif-
ference between the target probabilities for the two control
inputs and to make sure that the probabilities are within the
range of [0, 1] after transformation.

Putting it all together
We now put it all together in Algorithm 1. Our recursive

algorithm ControlExp takes as input the random example
set s, the current node n and its context input c(n) (line 1).
It starts from the root node of the causal tree and proceeds
top-down by finding distinguishing inputs and the context
for the children of the current node n (line 3). The calls to
EXP return the probability that the target variable is 1 given
the inputs (lines 4-5). It then systematically sets the values
of the parents to each k-tuple x. To set a parent ni to 1, it
sets the inputs under that node to d(ni) (line 9). To set it to
0, it sets its inputs to z(ni) (line 10). It sets the context of the
current node n to c(n) and calls EXP (line 12). The value re-
turned by EXP which represents the probability of the target
is used to infer the probability of the current node n when its
parents are set according to x (line 13). This probability will
be used to fill the CPT entry of node n and k-tuple x. It then
recursively calls itself on the parents of the current node and
their context vectors (lines 15–17).

ControlExp makes O(n2k) experimental queries, where
n is the number of nodes and k is the maximum number
of parents of any node in the causal tree. The number of
random examples is bounded by m = O(knε log n

δ), which
guarantees that all CPT entries used in computing the condi-
tional probabilities of examples x of D(x) > ε are learned
with a probability at least 1− δ. The time complexity of the
algorithm is O(nm+ n2k).

Experimental Results

. . . 128 . . .

. . . 128 . . .

Inputs (1-16)

Hidden Layers
with ReLU
Activation

Outputs

Figure 2: Diagram of MLP network. The blue nodes are the
16 inputs, the 256 orange nodes are divided into two equally
sized layers of ReLU units, and the green nodes comprise
the softmax output layer.

Experimental Setup
We evaluated our results on synthetic data generated using
a target causal tree, which is a full binary tree with depth
4 and 16 leaf nodes. At each node we randomly selected a
CPT, where each probability in the table is chosen indepen-
dently with 50% chance the probability is either close to 1
or to 0 by less than ε = 0.1. The extreme probabilities are
chosen to make the learning problem challenging. We show
the results of our program on 9 causal trees, i.e., 9 different
sets of CPTs. We compare our results to a neural network
baseline which is described later.

Figure 3: L1-error for ControlExp and Neural Nets. Obs+Exp is based on training the neural net on the same observational and
experimental data as ControlExp. Obs is based on choosing the same amount of data drawn from the observational distribution.

Each evaluation consists of 40 runs on different training
sets. Each training input is chosen uniformly randomly. The
training was performed on batches of increasing sizes of ran-
dom examples from 0 to 40 in increments of 4. During the
training of each batch, the algorithm also asks experimental
queries, which are answered by referring to the target tree.
When a query is answered, its response is stored so that it is
never asked again. After each batch of training the learned
tree was evaluated on 100 test examples which were chosen
randomly from the pool of examples not used for training.

The baseline neural network we compared to is shown in
Figure 2. Specifically, it is a multi-layered perceptron (MLP)
with two hidden layers, each with 128 nodes, which use
the ReLU activation function. The network’s output takes
the form of a two-valued probability distribution, as defined
by the softmax function over the last layer of two outputs.
The first output value indicates the learned probability of
the Bayesian network outputting a 0 and the second value
indicates the learned probability of it outputting a 1.

The neural network was trained using stochastic gradi-
ent descent to minimize the Kullback-Leibler divergence be-
tween the learned probability distribution and the ground
truth distribution. We found that a learning rate of 1.0, a
weight decay of 0.001, and a momentum of 0.9 produced
the best results. Training of the neural network was done
with 1000 epochs of each batch of examples.

Discussion of Results
The learning curves shows the average L1-error of the condi-
tional probability P (target|x) for the test example x com-
pared to the true probability plotted against the number of
unique experiments or random examples in each training
batch. Each subfigure is based on a different target tree. The
green plot labeled ControlExp shows the performance of
our algorithm. The blue plot labeled NNets(Obs+Exp) is the
performance of our neural network on the same observed ex-
amples and experiments as used by our algorithm. The red
plot is the performance of the neural network on the same
amount of data as the other two, but chosen using the obser-
vational distribution (uniformly random). As is evident from
the plots in Figure 3, ControlExp decisively outperforms the
two neural network approaches in all cases.

Interestingly, in most cases the L1 error of the MLP net-
work is smaller and much less noisy when training on only
the observational data than when training on both the obser-
vational and the experimental data. This is because the distri-
bution of the mixture of observational and experimental data
is very different from that of the test distribution. However,
the test distribution is identical to that of the observational
data. Since the neural network learning optimizes its perfor-
mance to the training distribution, it is misled by mixing in
the experimental data and performs better with the purely
observational data.

ControlExp is able to do better than the neural networks
because it systematically targets its queries to reduce uncer-

tainty. It fully takes advantage of the tree structure of the
causal network by exposing and controlling one node at a
time. The neural network, on the other hand, is oblivious to
the known structure and goes about its learning blindly.

We also tested other learning architectures including a
sparser and deeper network that mirrors the structure of
the true causal tree, other denser and deeper MLP net-
works, convolutional networks, and support vector machines
(SVMs). While SVMs performed slightly better than the
others, the prediction accuracies of all these methods were
fairly similar and were considerably worse than the MLP
network described in Figure 2. The fact that the best results
were obtained with a relatively simple and shallow network
with fully connected layers suggests that the depth of the
networks is not their key strength in this domain.

Conclusions
While the need for experiments to uncover causal laws has
been known for a long time, there appear to be more than
one reason for this need. The classical reason is that the di-
rection and structure of causality can only be discovered by
changing the data distribution through interventions. While
certainly true, even when the structure and the direction of
causality are known, there are other obstacles. In this pa-
per we argued that the latency of variables and the resulting
computational intractability are other obvious hurdles, and
showed that they too can be tackled to some extent through
experimentation. However, the experimentation must be de-
liberate, targeted, and adaptive to mirror what scientists do
in their everyday lives. It must be algorithmic to overcome
human limitations and scale to large real world problems.
We hope that this work paves the way for pushing the study
of causality in these directions.

References
Bello, K., and Honorio, J. 2017. Learning bayes networks
using interventional path queries in polynomial time and
sample complexity.
Binder, J.; Koller, D.; Russell, S.; and Kanazawa, K. 1997.
Adaptive probabilistic networks with hidden variables. Ma-
chine Learning 29:213–244.
Colombo, D.; Maathuis, M. H.; Kalisch, M.; and Richard-
son, T. S. 2012. Learning high dimensional direct acyclic
graphs with latent and selection variables. The Annals of
Statistics 40(1):294–321.
Cooper, G. F., and Yoo, C. 1999. Causal discovery from a
mixture of experimental and observational data. In Proceed-
ings of the Fifteenth conference on Uncertainty in artificial
intelligence, 116–125. Morgan Kaufmann Publishers Inc.
Dasgupta, S. 1997. The sample complexity of learning fixed
structure bayesian networks. Machine Learning 29:165–
180.
Eaton, D., and Murphy, K. 2007. Exact bayesian structure
learning from uncertain interventions. In Artificial Intelli-
gence and Statistics, 107–114.
Hauser, A., and Bühlmann, P. 2014. Two optimal strategies
for active learning of causal models from interventional data.

International Journal of Approximate Reasoning 55(4):926–
939.
Haussler, D. 1992. Decision theoretic generalizations of the
PAC model for neural net and other learning applications.
Inf. Comput. 100(1):78–150.
He, Y.-B., and Geng, Z. 2008. Active learning of causal net-
works with intervention experiments and optimal designs.
JMLR 9:2523–2547.
Hyttinen, A.; Hoyer, P. O.; Eberhardt, F.; and Järvisalo, M.
2013. Discovering cyclic causal models with latent vari-
ables: A general SAT-based procedure. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence.
Kearns, M. J., and Schapire, R. E. 1994. Efficient
distribution-free learning of probabilistic concepts. J. Com-
put. Syst. Sci. 48(3):464–497.
Kocaoglu, M.; Shanmugam, K.; and Bareinboim, E. 2017.
Experimental design for learning causal graphs with latent
variables. In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach,
H.; Fergus, R.; Vishwanathan, S.; and Garnett, R., eds., Ad-
vances in Neural Information Processing Systems 30, 7018–
7028. Curran Associates, Inc.
Li, G., and Leong, T.-Y. 2009. Active learning for causal
bayesian network structure with non-symmetrical entropy.
In PAKDD, 290–301. Springer-Verlog.
Pearl, J. 2009. Causality. Cambridge university press.
Peters, J.; Bühlmann, P.; and Meinshausen, N. 2016. Causal
inference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology) 78(5):947–1012.
Pitt, L., and Valiant, L. G. 1988. Computational limitations
on learning from examples. J. ACM 35(4):965–984.
Pitt, L., and Warmuth, M. K. 1990. Prediction-preserving
reducibility. J. Comput. Syst. Sci. 41(3):430–467.
Pollard, D. 1984. Convergence of Stochastic Processes.
New York, Berlin: Springer Verlog.
Ramoni, M., and Sebastiani, P. 2001. Robust learning with
missing data. Machine Learning 45:147170.
Reichenbach, H. 1991. The direction of time, volume 65.
Univ of California Press.
Silander, T., and Myllymaki, P. 2012. A simple approach
for finding the globally optimal bayesian network structure.
arXiv preprint arXiv:1206.6875.
Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
prediction, and search. adaptive computation and machine
learning.
Tadepalli, P., and Russell, S. J. 1998. Learning from ex-
amples and membership queries with structured determina-
tions. Machine Learning 32(3):245–295.
Tong, S., and Koller, D. 2001. Active learning for structure
in Bayesian networks. In IJCAI, 863–869.

Acknowledgments
We acknowledge the support of DARPA under contract
N66001-17-2-4030 and NSF under grant IIS-1619433.

