
Transfer Learning for Performance Modeling of Configurable Systems:
A Causal Analysis

Mohammad Ali Javidian, Pooyan Jamshidi, Marco Valtorta
Department of Computer Science and Engineering
University of South Carolina, Columbia, SC, USA

Abstract

Modern systems (e.g., deep neural networks, big
data analytics, and compilers) are highly config-
urable, which means they expose different perfor-
mance behavior under different configurations. The
fundamental challenge is that one cannot simply
measure all configurations due to the sheer size of
the configuration space. Transfer learning has been
used to reduce the measurement efforts by transfer-
ring knowledge about performance behavior of sys-
tems across environments. Previously, research has
shown that statistical models are indeed transferable
across environments. In this work, we investigate
identifiability and transportability of causal effects
and statistical relations in highly-configurable sys-
tems. Our causal analysis agrees with previous ex-
ploratory analysis (Jamshidi et al. 2017) and con-
firms that the causal effects of configuration options
can be carried over across environments with high
confidence. We expect that the ability to carry over
causal relations will enable effective performance
analysis of highly-configurable systems.

Introduction
To understand and predict the effect of configuration
options in configurable systems, different sampling
and learning strategies have been proposed (Sieg-
mund et al. 2015; Valov et al. 2017; Sarkar et al.
2015), albeit often with significant cost to cover the
highly dimensional configuration space. Recently,
we performed an exploratory analysis to understand
why and when transfer learning works for config-
urable systems (Jamshidi et al. 2017). In this pa-
per, instead of statistical analysis, we employ causal
analysis to address the possibility of identifying in-
fluential configuration options that have a causal re-
lation with the performance metrics of configurable
systems (identifiability) and whether such causal re-
lations are transferable across environments (trans-
portability).

Copyright c© 2019, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

TargetSource

Causal
Model

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

Extract Reuse

Learn

of transferable causal e↵ects across environments
that can contribute to learning faster, better, reliable,
and more important, less costly performance behav-
ior analysis in configurable systems. For a future re-
search direction, it would be interesting to explore
how causal analysis can be employed for developing
e↵ective sampling methods and provide explainable
performance analysis in configurable systems.

C

P

Source
Observational Data

C

P
Interventional Data

C

P

Target
Observational Data

Learn

pr(P|do(Ci)) =?

Causal
Structure Tran

sfe
rab

le

Kno
wled

ge
O1 O2 O3 O4 O5

P S

Acknowledgments. This work has been sup-
ported by AFRL and DARPA (FA8750-16-2-0042).

References
[Bareinboim and Pearl 2012] Bareinboim, E., and
Pearl, J. 2012. Transportability of causal e↵ects:
Completeness results. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence, 698–
704. Toronto, Ontario, Canada: AAAI Press.

[Bareinboim and Pearl 2016] Bareinboim, E., and
Pearl, J. 2016. Causal inference and the data-fusion
problem. Proceedings of the National Academy of
Sciences 113(27):7345–7352.

[Bareinboim, Tian, and Pearl 2014] Bareinboim, E.;
Tian, J.; and Pearl, J. 2014. Recovering from se-
lection bias in causal and statistical inference. In
Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, AAAI’14, 2410–2416.

[Huang and Valtorta 2006a] Huang, Y., and Valtorta,
M. 2006a. Identifiability in causal bayesian net-
works: A sound and complete algorithm. In Pro-
ceedings of the 21st AAAI Conference on Artificial
Intelligence, 1149–1154.

[Huang and Valtorta 2006b] Huang, Y., and Valtorta,
M. 2006b. Pearl’s calculus of intervention is com-

plete. In Proceedings of the Twenty-Second Confer-
ence Annual Conference on Uncertainty in Artificial
Intelligence (UAI-06), 217–224.

[Jamshidi et al. 2017] Jamshidi, P.; Siegmund, N.;
Velez, M.; Kästner, C.; Patel, A.; and Agarwal, Y.
2017. Transfer learning for performance modeling
of configurable systems: An exploratory analysis.
2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 497–508.

[Jamshidi et al. 2018] Jamshidi, P.; Velez, M.;
Kästner, C.; and Siegmund, N. 2018. Learning to
sample: Exploiting similarities across environments
to learn performance models for configurable
systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, 71–82.

[Kalisch et al. 2012] Kalisch, M.; Mächler, M.;
Colombo, D.; Maathuis, M.; and Bühlmann, P.
2012. Causal inference using graphical models with
the r package pcalg. Journal of Statistical Software,
Articles 47(11):1–26.

[Pearl and Bareinboim 2011] Pearl, J., and Barein-
boim, E. 2011. Transportability of causal and statis-
tical relations: A formal approach. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence,
247–254.

[Pearl and Bareinboim 2014] Pearl, J., and Barein-
boim, E. 2014. External validity: From do-calculus
to transportability across populations. Statistical
Science 29(4):579–595.

[Pearl 1995] Pearl, J. 1995. Causal diagrams for
empirical research (with discussion). Biometrika
82(4):669–710.

[Pearl 2009] Pearl, J. 2009. Causality. Models, rea-
soning, and inference. Cambridge University Press.

[Richardson and Spirtes 2002] Richardson, T. S.,
and Spirtes, P. 2002. Ancestral graph markov
models. The Annals of Statistics 30(4):962–1030.

[Sarkar et al. 2015] Sarkar, A.; Guo, J.; Siegmund,
N.; Apel, S.; and Czarnecki, K. 2015. Cost-
e�cient sampling for performance prediction of
configurable systems. In Proceedings of the 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), 342–352.

[Shpitser and Pearl 2006a] Shpitser, I., and Pearl, J.
2006a. Identification of conditional interventional
distributions. In Proceedings of the 22nd Confer-
ence on Uncertainty in Artificial Intelligence, UAI
2006, 437–444.

[Shpitser and Pearl 2006b] Shpitser, I., and Pearl, J.
2006b. Identification of joint interventional distri-
butions in recursive semi-markovian causal models.

O
bs

er
va

tio
na

l
D

at
a

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =
W ⇥H⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

In
te

rv
en

tio
na

l
D

at
a

O
bs

er
va

tio
na

l
D

at
a

Causal Effect of
Config. Options
on Performance

Figure 1: Exploiting causal inference for performance analysis.

Recently, transfer learning has been used to de-
crease the cost of learning by transferring knowl-
edge about performance behavior across environ-
ments (Jamshidi et al. 2018; Valov et al. 2017). For-
tunately, performance models typically exhibit simi-
larities across environments, even environments that
differ substantially in terms of hardware, workload,
or version (Jamshidi et al. 2017). The challenge is
to (i) identify similarities and (ii) make use of them
to ease learning of performance models.

To estimate causal effects, scientists normally
perform randomized experiments where a sample
of units drawn from the population of interest is
subjected to the specified manipulation directly. In
many cases, however, such a direct approach is
not possible due to expense or ethical considera-
tions. Instead, investigators have to rely on obser-
vational studies to infer effects. One of the funda-
mental questions in causal analysis is to determine
when effects can be inferred from statistical infor-
mation, encoded as a joint probability distribution,
obtained under normal, intervention-free measure-
ment. Pearl and his colleagues have made major
contributions in solving the problem of identifiabil-

ity. Pearl (Pearl 1995) established a calculus of inter-
ventions known as do-calculus, consisting of three
inference rules by which probabilistic equations in-
volving interventions and observations can be trans-
formed into other such equations, thus providing a
syntactic method of deriving claims about interven-
tions. Later, do-calculus was shown to be complete
for identifying causal effects, that is, every causal
effect that can be identified can be derived using the
three do-calculus rules (Huang and Valtorta 2006;
Shpitser and Pearl 2006).

Pearl and Bareinboim (Pearl and Bareinboim
2011; Bareinboim and Pearl 2012; Pearl and Barein-
boim 2014; Bareinboim and Pearl 2016) provided
strategies for inferring information about new pop-
ulations from trial results that are more general than
re-weighting. They supposed that we have available
both causal information and probabilistic informa-
tion for population A (i.e., the source), while for
population B (i.e., the target) we have only (some)
probabilistic information, and also that we know
that certain probabilistic and causal facts are shared
between the two and certain ones are not. They of-
fered theorems describing what causal conclusions
about population B are thereby fixed. Conclusions
about one population can be supported by informa-
tion about another depends on exactly what causal
and probabilistic facts they have in common.

In this paper, we conduct a causal analysis, com-
paring performance behavior of highly-configurable
systems across environmental conditions (chang-
ing workload, hardware, and software versions), to
explore when and how causal knowledge can be
commonly exploited for performance analysis. In
this paper, we use the proposed formal language of
causal graphs for identifiability and transportability
in the literature, to answer:

Is it possible to identify causal relations from
observational data and how generalizable are
they in highly-configurable systems?

Our results indicate the possibility of identifia-
bility of causal effects in general. Also, our results
show that many of causal/statistical relations about
performance behavior can be transferred across en-
vironments even in the most severe changes we ex-
plored, and that transportability is actually trivial
for many environmental changes. Our empirical re-
sults also indicate the recoverability of conditional
probabilities from selection-biased data in many
cases. The results indicate that causal information
can be used as a guideline for cost-efficient sam-
pling for performance prediction of configurable
systems. The supplementary materials including
data and empirical results are available at: https:
//github.com/majavid/AAAI-WHY-2019.

Causal Graphs
A causal graphical model is a special type of
Bayesian network in which edges are interpreted as
direct causal effects. This interpretation facilitates
predictions under arbitrary (unseen) interventions,
and hence the estimation of causal effects (Pearl
2009). In this section, we consider two constraint-
based methods to estimate the causal structure from
observational data. For this purpose, we discuss the
PC algorithm and the fast causal inference (FCI) al-
gorithm (Spirtes, Glymour, and Scheines 2000).

Estimating causal structures
A causal structure without feedback loops and with-
out hidden or selection variable can be visualized
using a directed acyclic graph (DAG) where the
edges indicate direct cause-effect relationships. Un-
der some assumptions, Pearl (Pearl 2009) showed
that there is a link between causal structures and
graphical models. Roughly speaking, if the under-
lying causal structure is a DAG, we observe data
generated from this DAG and then estimate a DAG
model (i.e., a graphical model) on this data, the es-
timated complete partially directed acyclic graph
(CPDAG) represents the equivalence class of the
DAG model describing the causal structure. This
holds if we have enough samples and assuming that
the true underlying causal structure is indeed a DAG
without unobserved common causes (confounders)
or selection variables. Note that even given an infi-
nite amount of data, we usually cannot identify the
true DAG itself, but only its equivalence class. Ev-
ery DAG in this equivalence class can be the true
causal structure (Kalisch et al. 2012).

In the case of unobserved variables, one could
still visualize the underlying causal structure with a
DAG that includes all observed, unobserved cause,
and unobserved selection variables. However, when
inferring the DAG from observational data, we do
not know all unobserved variables. We, therefore,
seek to find a structure that represents all condi-
tional independence relationships among the ob-
served variables given the selection variables of the
underlying causal structure. It turns out that this is
possible. However, the resulting object is in gen-
eral not a DAG for the following reason. Suppose,
we have a DAG including observed and unobserved
variables, and we would like to visualize the con-
ditional independencies among the observed vari-
ables only. We could marginalize out all unobserved
cause variables and condition on all unobserved se-
lection variables. It turns out that the resulting list
of conditional independencies can in general not be
represented by a DAG, since DAGs are not closed
under marginalization or conditioning (Richardson
and Spirtes 2002). A class of graphical indepen-

https://github.com/majavid/AAAI-WHY-2019
https://github.com/majavid/AAAI-WHY-2019

dence models that is closed under marginalization
and conditioning and that contains all DAG mod-
els is the class of ancestral graphs (Richardson and
Spirtes 2002). A mixed graph is a graph containing
three types of edges, undirected (−), directed (→)
and bidirected (↔). An ancestral graph G is a mixed
graph in which the following conditions hold for all
vertices in G:

(i) if α and β are joined by an edge with an arrow-
head at α, then α is not anterior to β.

(ii) there are no arrowheads present at a vertex which
is an endpoint of an undirected edge.

Maximal ancestral graphs (MAGs), which we will
use from now on, also obey a third rule:

(iii) every missing edge corresponds to a conditional
independence.

An equivalence class of a MAG can be uniquely rep-
resented by a partial ancestral graph (PAG) (Zhang
2008). Edge directions are marked with “−” and “>”
if the direction is the same for all graphs belong-
ing to the PAG and with “◦” otherwise. The bidi-
rected edges come from hidden variables, and the
undirected edges come from selection variables.

We use the Hugin PC algorithm and the FCI
algorithm in the R package pcalg to recover the
causal graph of each environment for our subject
systems. Since all possible configurations of options
are present in the first and last subject systems in
Table 1 and all data sets have been sampled on the
basis of configuration settings alone, we can assume
that there are no unobserved common causes and se-
lection variables, i.e., the causal sufficiency assump-
tion (Spirtes, Glymour, and Scheines 2000) holds.
In other cases, due to the sparsity of data, we can-
not exclude the presence of hidden variables, there-
fore, we use the FCI algorithm to recover the causal
graphs.

Research Questions and Methodology
The overall question that we explore in this paper
is “why and when identifiability and transportabil-
ity of causal effects can be exploited in configurable
systems?” We hypothesize that estimating causal ef-
fects from observational studies alone, without per-
forming randomized experiments or manipulations
of any kind (causal inference of this sort is called
identification (Pearl 2009)) is possible for config-
urable software systems. Also, we speculate that
causal relations in the source and the target are
somehow related. To understand the notion of iden-
tification and relatedness that we find for environ-
mental changes, we explore three questions.

RQ1. Is it possible to estimate causal effects
of configuration options on performance from
observational studies alone?

If we can establish with RQ1 that causal effects
of configuration options on the performance are
estimable, this would be promising for perfor-
mance modeling in configurable systems because
it helps us to estimate an accurate, reliable, and
less costly causal effect in an environment. Even if
not all causal effects may be estimable, we explore
which configuration options are influential on per-
formance.

RQ2. Is the causal effect of configuration op-
tions on performance transportable across en-
vironments?

RQ2 concerns transferable knowledge from the
source that can be exploited to learn an accurate and
less costly performance model for the target envi-
ronment. Specifically, we explore how the causal ef-
fects of influential options are transportable across
environments and how they can be estimated.

RQ3. Is it possible to recover conditional prob-
abilities from selection-biased data to the en-
tire population?

RQ3 concerns transferable knowledge that can be
exploited for recovering conditional probabilities
from selection-biased data to the population. Specif-
ically, we explore whether causal/statistical rela-
tions between configuration options and perfor-
mance measures are recoverable from a biased sam-
ple without resorting to external information.

Methodology
Design: We investigate the causal effects of con-
figuration options on performance measures across
environments. So, we need to establish the perfor-
mance of a system and how it is affected by con-
figuration options in multiple environments. As in
(Jamshidi et al. 2017), we measure the performance
of each system using standard benchmarks and re-
peat the measurements across a large number of
configurations. We then repeat this process for sev-
eral changes to the environment: using different
hardware, workloads, and versions of the system.
Finally, we perform the analysis of relatedness by
comparing the performance and how it is affected
by options across environments. We perform com-
parison of a total of 65 environment changes.
Analysis: For answering the research questions, we
formulate three hypotheses about:
• Identifiability: The causal effect of X on Y is

identifiable from a causal graph G if the quan-
tity P(y|do(x)) can be computed uniquely from

https://www.hugin.com/
https://cran.r-project.org/web/packages/pcalg/index.html

any positive probability of the observed variables
(Pearl 2009).

• Transportability: Given two environments, de-
noted Π and Π∗, characterized by probability dis-
tributions P and P∗, and causal diagrams G and
G∗, respectively, a causal relation R is said to be
transportable from Π to Π∗ if R(Π) is estimable
from the set I of interventions on Π, and R(Π∗)
is identified from P, P∗, I,G, and G∗ (Pearl and
Bareinboim 2011).

• Recovering conditional probabilities: Given a
causal graph Gs augmented with a node S encod-
ing the selection mechanism, the distribution Q =
P(y|x) is said to be s-recoverable from selection-
biased data in Gs if the assumptions embedded in
the causal model renders Q expressible in terms
of the distribution under selection bias P(v|S = 1)
(Bareinboim, Tian, and Pearl 2014).

For each hypothesis, we recover the corresponding
causal graph and analyze 65 environment changes
in four subject systems mentioned below. For each
hypothesis, we discuss how commonly we identify
this kind of estimation and whether we can iden-
tify classes of changes for which this estimation is
characteristic. If we find out that for an environmen-
tal change a hypothesis holds, it means that enough
knowledge is available to estimate causal effects/
conditional probabilities across environments.

Subject systems
In this study, we selected four configurable soft-
ware systems from different domains, with differ-
ent functionalities, and written in different program-
ming languages (Table 1). Further details can be
found in (Jamshidi et al. 2017).

Table 1: Overview of the real-world subject systems

System Domain d |C| |H| |W | |V |
SPEAR SAT solver 14 16384 3 4 2

SQLite Database 14 1000 2 14 2

x264 Video encoder 16 4000 2 3 3

XGBoost Machine learning 12 4096 3 3 1

Identification of Causal Effects (RQ1)
We can derive a complete solution to the prob-
lem of identification whenever assumptions are ex-
pressible in a DAG form. This entails (i) graphi-
cal and algorithmic criteria for deciding identifia-
bility of causal effects, (ii) automated procedures
for extracting all identifiable estimand (Pearl 1995;
Huang and Valtorta 2006; Shpitser and Pearl 2006).

no-mbtreeno-scenecut visualizeno-8x8dct

encoding-time-feature1-2762-8

Figure 2: Causal graph for x264 deployed on internal server Feature1 and
used version 2.76.2 of x264 and used a small video for encoding. For all
figures we do not show options that do not affect on performance.

Here, we investigate the possibility of estimat-
ing causal effects of configuration options on per-
formance from observational studies alone. For this
purpose, we consider a hypothesis about the possi-
bility of identifiability in experiments with a single
performance metric (e.g., response time) and mul-
tiple performance metrics (e.g., response time and
throughput). We expect that this hypothesis hold for
(almost) all cases, which would enable an easy esti-
mation of causal effects from the available data.
H1: The causal effect of options Oi on performance
per f from observed data is identifiable.
Importance: If the causal effect of configuration
options on performance is identifiable from avail-
able data, we can predict the performance behav-
ior of a system in the presence/absence of a config-
uration option just by available observational data.
Also, we may get rid of the curse of dimensionality
in highly configurable systems to run and test new
experiments. Because the recovered causal structure
from the observed data indicates whether a given
configuration option is influential on performance.
Methodology: We evaluate whether
P(per f |do(Oi = o′)) is identifiable. We used
PC or FCI algorithms (with two commonly used
p-values .01 and 0.05) along with a set of back-
ground knowledge (came from experts’ opinions)
that explains the observed independence facts in a
sample, to learn the corresponding causal graph. For
example, Figure 2 shows the obtained causal graph
for x264 in the corresponding environment. We use
this causal graph to estimate the causal effect of the
configuration option visualize on the encoding time
of the system i.e., P(encoding − time − f eature1 −
2762 − 8|do(visualize)). Also, Figure 3 shows
the obtained causal graph for XGBoost12 in the
corresponding environment. We use this causal
graph to estimate P(test − time|do(max − depth)).
Results: First, the obtained causal graph in each
case indicates which configuration options are in-
fluential on performance for the corresponding en-
vironment. In all instances (see supplementary ma-
terial), the number of configuration options that af-
fect the corresponding performance metric is re-
markably small (usually less than 6), indicating that

test-time

min-child-weight colsample-bylevel

learning-rate

subsample

colsample-bytree

accuracy nthread

n-estimators train-time

max-depth

Figure 3: Causal graph for XGBoost12 with CNAE-9 data set, deployed
on Feature 4. Performance nodes are: train-time, test-time, and accuracy.

the dimensionality of the configuration space for
sampling and running new experiments can be re-
duced drastically. This observation confirms the ex-
ploratory analysis in (Jamshidi et al. 2017), show-
ing that only a small proportion of possible interac-
tions have an effect on performance and so are rel-
evant. For example, Figure 2 shows that only four
(out of 16) configuration options effect the encod-
ing time in the corresponding environment. Sec-
ond, P(per f |do(Oi = o′)) is estimable in all en-
vironments with a single measurement, because in
all cases, the pre-intervention and post-intervention
(Pearl 2009) causal graphs are the same, and so
P(per f |do(Oi = o′)) = P(per f |Oi = o′), indicat-
ing that the hypothesis H1 holds in general. For ex-
ample, for x264 deployed on internal server Fea-
ture1 and used version 2.76.2 of x264 and used
a small video for encoding, using do-calculus and
Hugin gives: P(encoding− time− f eature1−2762−
8|do(visualize) = 1) = P(encoding − time −
f eature1 − 2762 − 8|visualize = 1) with the mean
of 0.37 and a variance of 0.14. Also, Figure 3 shows
those configuration options that affect performance
nodes in the corresponding environment. Similarly,
we observed that P(per f |do(Oi = o′)) is estimable
in all environments with multiple measurements.
For example, for XGBoost12, using Rule 2 of do-
calculus gives: P(test − time|do(max − depth)) =
P(test − time|max − depth).
Implications: The results indicate that such infor-
mation can be used to find (causal) influential op-
tions, leading to effective exploration strategies.

Transportability of Causal and
Statistical Relations Across

Environments (RQ2)

Here, we investigate the possibility of transportabil-
ity of causal effects across environments. For this
purpose, we consider a hypothesis about the pos-
sibility of transportability of causal/statistical rela-
tions across environments. We observed that this hy-
pothesis holds for some cases with both small and
even severe environmental changes, which would
enable an easy generalization (trivial transportabil-

performance

spset-sw-verif

spset-autotuned-fh-1-1

spset-old-default

spset-autotuned-fh-1-0

spset-hw-bmc

sp-var-dec-heur
S1

Figure 4: Selection diagram for SPEAR in two environments: one with
measured solving time, deployed on a private server, version 2.7, SAT size
10286, and another deployed on Azure Cloud.

ity1) of causal and statistical relations from source
to the target environment.
H2: The causal/statistical relation R is transportable
across environments.
Importance: When experiments cannot be con-
ducted in the target environment, and despite severe
differences between the two environments, it might
still be possible to compute causal relations by bor-
rowing experimental knowledge from the source en-
vironment. Also, if transportability is feasible, the
investigator may select the essential measurements
in both experimental and observational studies, and
thus minimize measurement costs.
Methodology: We investigate whether
P(per f |do(Oi = o′)) (or P(per f |Oi = o′)) is
transportable across environments. For this purpose,
we first recover the corresponding causal graphs for
source and target environments in a similar way to
that described in H1. Since the S-variables in the
selection diagram2 locate the mechanisms where
structural discrepancies between the two environ-
ments are suspected to take place, we only add the
selection node to the measurement metric node(s).
For example, Figure 4 shows the selection diagram
for SPEAR deployed on two different environments.
We use this selection diagram to verify the trans-
portability of P(per f |do(spset − hw − bmc)) and
P(per f |spset−hw−bmc) across mentioned environ-
ments. Also, Figure 5 shows the obtained selection
diagram for XGBoost12 in two environments. We
use this selection diagram to verify the transporta-
bility of P(test − time|do(colsample − bylevel)).
Results: We observed that H2 holds for those en-
vironments (with single measurement metric) that
share the same causal graph while the presence of a
selection node pointing to the variable, say per f , in

1This kind of transportability allows us to esti-
mate causal/statistical relations directly from passive
observations on the target environment, un-aided by
causal/statistical information from the source environ-
ment (Pearl and Bareinboim 2011).

2A selection diagram is a causal diagrams augmented
with a set, S, of selection variables, where each member of
S corresponds to a mechanism by which the two domains
differ (Pearl and Bareinboim 2011).

test-time

min-child-weight

learning-rate

subsamplecolsample-bytree

accuracy

nthread

n-estimators

train-time

colsample-bylevel

alpha

S1

S2

S3

Figure 5: Selection diagram for XGBoost12 deployed on two environ-
ments: one deployed on a private server Feature 4, with covtype dataset,
and another with the same characteristics but deployed on Azure Cloud.
Performance nodes are: train-time, test-time, and accuracy.

the selection diagram indicates that the local mecha-
nism that assigns values to per f may not the same in
both environments. In these cases, the correspond-
ing selection diagram is Oi → per f ← S , and
so the causal/statistical relation is trivially trans-
portable (Pearl and Bareinboim 2011). This obser-
vation is consistent with the exploratory analysis in
(Jamshidi et al. 2017), showing that for small envi-
ronmental changes, the overall performance behav-
ior is transportable across environments. However,
our observations show that despite glaring differ-
ences between the two environments, it might still
be possible to infer causal effects/statistical relations
across environments. Also, we observed that trans-
portability of causal/statistical relations across en-
vironments with multiple measurement metrics. In
such cases, the complete algorithm in (Bareinboim
and Pearl 2012) can be used to derive the trans-
port formula. Nevertheless, our observations indi-
cate that transportable causal/statistical relations are
trivial. For example, based on Figure 5, we have:
P(test − time|do(colsample − bylevel)) = P(test −
time|colsample − bylevel).
Implications: Transportability of causal relations
can be exploited to avoid running new costly exper-
iments in the target environment.

Generalizing Statistical Findings Across
Sampling Conditions (RQ3)

Here, we examine the possibility of recovering con-
ditional probabilities from selection-biased data. We
consider a hypothesis about the possibility of re-
coverability without external data. We observed that
this hypothesis holds for some cases, thus enabling
the estimation of causal/statistical relations from
selection-biased data to the entire population.
H3: The causal relations from selection-biased data
are transportable to the population.
Importance: Since selection bias challenges the
validity of inferences in statistical analysis, we
may get rid of selection bias and estimate the
causal/statistical relations of the entire population
without resorting to external information.

fillseq

sqlite-omit-quickbalance

S

(a)

fillseq

sqlite-omit-quickbalance

S

(b)

fillseq

sqlite-omit-quickbalance

S

(c)

fillseq

sqlite-omit-quickbalance

(d)

Figure 6: The causal graph Gs for SQLite in the environment with Feature
20 and version 3.7.6.3.

Methodology: We use the causal graph Gs aug-
mented with a node S that encodes the selection
mechanism. According to Theorem 1 in (Barein-
boim, Tian, and Pearl 2014), the distribution P(y|x)
is s-recoverable from Gs if and only if (S ⊥⊥ Y |X),
which is a powerful test for s-recoverability.
Results: As we observed, in most cases, the recov-
ered causal graph by FCI algorithm does not contain
a non-chordal undirected component, indicating that
FCI has not detected any selection bias from sam-
pled data. In such cases, s-recoverability is the same
as transportability. So, H3 holds for many cases in
our study. For example, P(f illseq|sqlite − omit −
quickbalance) is not s-recoverable in Figure 6 (a)
and (c), but it is s-recoverable in Figure 6 (b) and
(d). In the data collected for the performance analy-
sis of configurable systems, authors of (Jamshidi et
al. 2017; Jamshidi et al. 2018) sampled on the basis
of configuration settings alone; therefore the condi-
tions of Figure 6 (b) and (d) hold, i.e., the selection
bias is benign and the distribution of performance
given configuration settings is recoverable. In these
cases, knowledge from a sampled subpopulation can
be generalized to the entire population. However,
FCI recovered some structures of the type of Figure
6 (a), indicating that the sample size is small enough
that some (implicit) selection bias connecting per-
formance with one or more configuration settings.
Implications: Causal information can be used as
a guideline for cost-efficient sampling for per-
formance prediction of configurable systems and
avoiding of biased estimates of causal/statistical ef-
fects in cases that recoverability was not possible.

Threats to Validity
1) External validity: We selected a diverse set of
subject systems and a large number of purposefully
selected environment changes, but, as usual, one has
to be careful when generalizing to other subject sys-
tems and environmental changes.
2) Internal and construct validity: Due to the size of

configuration spaces, we could only measure con-
figurations exhaustively in two subject systems and
had to rely on sampling (with substantial size) for
the others, which may miss causal effects in parts of
the configuration space that we did not sample.

Conclusion
To the best of our knowledge, this is the first paper
that uses causal analysis to identify the key knowl-
edge pieces that can be exploited for transfer learn-
ing in highly-configurable systems. Our empirical
study demonstrates the existence of diverse forms of
transferable causal effects across environments that
can contribute to learning faster, better, reliable, and
more importantly, less costly performance behavior
analysis in configurable systems. For a future re-
search direction, it would be interesting to explore
how causal analysis can be employed for developing
effective sampling methods and provide explainable
performance analysis in configurable systems.

Acknowledgments. This work has been sup-
ported by AFRL and DARPA (FA8750-16-2-0042).

References
[Bareinboim and Pearl 2012] Bareinboim, E., and

Pearl, J. 2012. Transportability of causal effects:
Completeness results. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence, 698–
704. Toronto, Ontario, Canada: AAAI Press.

[Bareinboim and Pearl 2016] Bareinboim, E., and
Pearl, J. 2016. Causal inference and the data-fusion
problem. Proceedings of the National Academy of
Sciences 113(27):7345–7352.

[Bareinboim, Tian, and Pearl 2014] Bareinboim, E.;
Tian, J.; and Pearl, J. 2014. Recovering from se-
lection bias in causal and statistical inference. In
Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, AAAI’14, 2410–2416.

[Huang and Valtorta 2006] Huang, Y., and Valtorta,
M. 2006. Identifiability in causal bayesian net-
works: A sound and complete algorithm. In Pro-
ceedings of the 21st AAAI Conference on Artificial
Intelligence, 1149–1154.

[Jamshidi et al. 2017] Jamshidi, P.; Siegmund, N.;
Velez, M.; Kästner, C.; Patel, A.; and Agarwal, Y.
2017. Transfer learning for performance modeling
of configurable systems: An exploratory analysis.
2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 497–508.

[Jamshidi et al. 2018] Jamshidi, P.; Velez, M.;
Kästner, C.; and Siegmund, N. 2018. Learning to
sample: Exploiting similarities across environments
to learn performance models for configurable
systems. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, 71–82.

[Kalisch et al. 2012] Kalisch, M.; Mächler, M.;
Colombo, D.; Maathuis, M.; and Bühlmann, P.
2012. Causal inference using graphical models with
the r package pcalg. Journal of Statistical Software,
Articles 47(11):1–26.

[Pearl and Bareinboim 2011] Pearl, J., and Barein-
boim, E. 2011. Transportability of causal and statis-
tical relations: A formal approach. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence,
247–254.

[Pearl and Bareinboim 2014] Pearl, J., and Barein-
boim, E. 2014. External validity: From do-calculus
to transportability across populations. Statistical
Science 29(4):579–595.

[Pearl 1995] Pearl, J. 1995. Causal diagrams for em-
pirical research. Biometrika 82(4):669–710.

[Pearl 2009] Pearl, J. 2009. Causality. Models, rea-
soning, and inference. Cambridge University Press.

[Richardson and Spirtes 2002] Richardson, T. S.,
and Spirtes, P. 2002. Ancestral graph markov
models. The Annals of Statistics 30(4):962–1030.

[Sarkar et al. 2015] Sarkar, A.; Guo, J.; Siegmund,
N.; Apel, S.; and Czarnecki, K. 2015. Cost-
efficient sampling for performance prediction of
configurable systems. In Proceedings of the 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), 342–352.

[Shpitser and Pearl 2006] Shpitser, I., and Pearl, J.
2006. Identification of conditional interventional
distributions. In Proceedings of the 22nd Confer-
ence on Uncertainty in Artificial Intelligence, UAI
2006, 437–444.

[Siegmund et al. 2015] Siegmund, N.; Grebhahn,
A.; Apel, S.; and Kästner, C. 2015. Performance-
influence models for highly configurable systems.
In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2015, 284–294. New York, NY, USA: ACM.

[Spirtes, Glymour, and Scheines 2000] Spirtes, P.;
Glymour, C.; and Scheines, R. 2000. Causation,
Prediction and Search, second ed. MIT Press.

[Valov et al. 2017] Valov, P.; Petkovich, J.-C.; Guo,
J.; Fischmeister, S.; and Czarnecki, K. 2017. Trans-
ferring performance prediction models across differ-
ent hardware platforms. In Proceedings of the 8th
ACM/SPEC on International Conference on Perfor-
mance Engineering, ICPE ’17, 39–50. ACM.

[Zhang 2008] Zhang, J. 2008. On the completeness
of orientation rules for causal discovery in the pres-
ence of latent confounders and selection bias. Arti-
ficial Intelligence 172(16):1873 – 1896.

	Introduction
	Causal Graphs
	Estimating causal structures

	Research Questions and Methodology
	Methodology
	Subject systems

	Identification of Causal Effects (RQ1)
	Transportability of Causal and Statistical Relations Across Environments (RQ2)
	Generalizing Statistical Findings Across Sampling Conditions (RQ3)
	Threats to Validity
	Conclusion

