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Abstract

Within the potential outcomes framework for causal
inference, the choice of unit features and matching al-
gorithms can impact the estimated causal effects, a
problem known as model dependence. Here, we look
at this problem in the context of observational network
data and recently developed network representations
within machine learning. By varying node representa-
tions, matching models, and methods for causal effect
estimation on synthetic and real-world graph datasets,
we show experimentally that estimated causal effects
can vary significantly, both in sign and magnitude. With
this paper, we aim to highlight some of the challenges
of estimating causal effects from observational network
data and hope to inspire further studies on model de-
pendence in causal inference.

Introduction

Artificial intelligence and big data technologies are revo-
lutionizing the sciences, engineering, and industry. Pre-
dictive systems are used to make sense of rapidly in-
creasing amounts of data and support human decision
making, from what to read, to whom to date, whether
to invite a job applicant for an interview, and what
drug to develop next. Meanwhile, these systems are
limited in their ability to answer causal questions from
historical data. If a social media user didn’t follow fake
news media accounts, would they have expressed less
radical views? If a recommendation engine showed a
more diverse set of job applicants to a hiring manager,
would that have led to better hires? The answers to
such questions require counterfactual reasoning, what
the outcome of interest would have been if the circum-
stances in which the observed outcome occurred were
different.

It is especially challenging to answer counterfactual
questions with "big data" which is inherently biased,
noisy, and exhibits complex relationships, unlike care-
fully designed i.i.d. data from surveys (jap 2015). To
capture these data properties, it is convenient to rep-
resent many real-world data sources as networks (or
graphs) and reason about them probabilistically (Getoor
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and Taskar 2007). In these networks, nodes represent
interdependent entities, such as people, companies, web-
sites, and diseases, while edges denote different relation-
ships between these entities, such as friendship, hyper-
link, contribution, and spread of disease. In networks,
the subjects’ outcomes may not independent of each
other and the characteristics of a subject can be corre-
lated with the characteristics of the subject’s neighbors.

One of the challenges of answering counterfactual
questions from observational data is that the process
by which treatment (e.g., following fake news media
accounts) and control (e.g., not following such accounts)
are assigned to units (e.g., social media users) is often
unknown, thus breaking desirable causal inference as-
sumptions. Within the potential outcomes framework,
researchers have studied matching as a way to deal with
selection bias in observational data (Stuart 2010). How-
ever, just like the performance of machine learning is
heavily dependent on the choice of data representation
and model assumptions (Bengio, Courville, and Vincent
2013)), potential outcome estimates depend on the choice
of features and models (Ho et al. 2007)). Different choices
can change the sign and statistical significance of discov-
ered causal effects. Thus, two researchers who study the
same data may have widely different conclusions due to
the difference in their data representations and models.
This problem is known as model dependence of causal
inference (Ho et al. 2007).

Model dependence is especially relevant in the con-
text of big data where there are plethora of machine
learning models available to researchers and deciding
which specific features to collect and which model and
data representation to use is at the discretion of each
researcher. This is further exacerbated by the fact
that typically there is no ground truth of causal ef-
fect in such data which makes it hard to build bench-
marks and to improve on state-of-the-art baselines, a
common practice in machine learning. Additionally,
learning a causal graph (Bareinboim and Pearl 2016;
Pear] 2009)) on network data is a non-trivial task that re-
quires not only domain knowledge about the constraints
for structure learning (Colombo and Maathuis 2014;
Heinze-Deml, Maathuis, and Meinshausen 2018} |Srid-
har, Pujara, and Getoor 2018) but also a way to model



the relations between entities in the network (Friedman
et al. 1999; |Getoor and Taskar 2007)).

The goal in this paper is to understand model de-
pendence in relational data and inform the design of
further studies on causal inference from network data.
We revisit the potential outcomes framework (Rubin
1974]) through the lens of recent advances in machine
learning for networks and specify the relationship be-
tween network representations and causal effect esti-
mation. We propose to capture each network node by
leveraging data representation frameworks from graph
mining (Khan and Ranu 2017) and statistical relational
learning (Getoor and Taskar 2007)). We vary the fol-
lowing model components: whether the node features
are raw or use embeddings, whether they consider the
network structure or not, whether matching utilizes fully
blocked or a propensity score model, whether the esti-
mator uses SATT on the matched nodes, SATE with a
predicted counterfactual, or a linear model for causal
effect estimation. Using both synthetic and real-world
network data, we test the hypothesis that model choices
lead to different causal effect estimates. To the best of
our knowledge, this is the first study that sheds light on
the important question of model dependence in causal
effect estimation from network data.

Related Work

Our work draws upon three main areas of research:
causal inference in networks, network representations,
and model dependence. We briefly describe each.

Causal inference in observational network
data. Many real world datasets can be naturally rep-
resented as networks, and the confounding effect of
relational covariates (i.e. covariates derived from the re-
lational structure) needs to be taken into account when
estimating causal effects. Arbour et al. (Arbour et all
2014)) developed Relational Propensity Score Matching
(RPSM) which accounts for non-trivial relational con-
founders to allow for the application of propensity score
matching. They also developed another method Rela-
tional Covariate Adjustment (RCA) to infer networks
effects (Arbour, Garant, and Jensen 2016)) through an
extension of Pearl’s backdoor criterion to the relational
domain (Pearl 2009).

Network representations. Recent advances in net-
work representation learning have shown that embedded
representations of nodes can improve the overall per-
formance of machine learning models. Two prominent
embedded representations are Node2Vec (Grover and
Leskovec 2016|) and GraphSAGE (Hamilton, Ying, and
Leskovec 2017b)). Node2Vec primarily learns from the
structure of the network, whereas GraphSAGE consid-
ers the attributes of nodes in addition to the structure.
In our work, we compare raw and embedded representa-
tions in the context of causal inference.

Model dependence. Model dependence refers to
the dependence between the researcher’s model choice
and the magnitude of the discovered causal effects (Ho
et al. 2007; |[King and Nielsen 2016|). Model dependence

highlights the problem that a researcher can produce
results that are agreeable with their posed hypotheses
by just changing the model (King and Langche 2006).

Causal effect estimation in networks

Let G = (V, E) denote an undirected, unweighted, at-
tributed graph where V' is the set of nodes and F is the
set of undirected edges between these nodes. To avoid
confusion with the term graph referring to graphical
models, we will refer to the data graph G as network.
If a node v; has an edge with node v; then {v;,v;} € E.
Each node v; € V has an m-dimensional vector of at-
tributes modeled as random variables v;.A € R™, a
treatment assignment v;. 7 and a measure of an out-
come of interest v;.Y. If v;.T = 0, then node v; belongs
to the control group Vi, while v;. T = 1 signifies that
v; belongs to the treatment group V. Note that some
of the attribute or treatment values can be missing.
Node attributes reflect each node’s ego network and
can include information about the ego node itself, its
edges and its immediate neighbors, from which the node
representations can be derived, as discussed in network
representations for matching section.

Effect Estimation

The main premise of the potential outcomes framework
of causal inference is that we can observe the outcome
of a target variable for an individual v; in either the
treatment or control group (but not both), and we can
estimate the counterfactual, the unobserved outcome
if they were in the other group (Rubin 1974)). Let
v;.Y (1) and v;.Y (0) denote the potential outcomes of
v;.Y if unit v; were assigned to treatment (v;. T =1) or
control (v;.T = 0), respectively. The treatment effect

(or causal effect) for unit v; is the difference g(i) =

v;.Y (1) — v;.Y(0).

For the treatment effect to be estimated, the following
assumptions have to hold:

e Quverlap is the assumption that each unit assigned
to the treatment or control group could have been
assigned to the other group.

o Stable unit treatment value assumption (SUTVA)
states that the outcome of unit v; depends only on the
treatment it receives and not on the treatment other
units receive.

e Ignorability — also known as conditional indepen-
dence (Pearl 2009) and absence of unmeasured con-
foundness (Ho et al. 2007)) — is the assumption that
all variables v;.A that can influence the outcome v;.Y
are observed in the data and there are no unmeasured
confounding variables (ones that can cause changes in
both the treatment and the outcome variables).

To estimate the causal effects, we consider three meth-
ods: sample-average treatment effect (SATE), sample-
average treatment effect for the treated (SATT), and a
linear model (Imbens 2004) . SATE is defined as:

SATE = ﬁ > (i Y (1) = vi.Y(0)), (1)

v, eV



Effect Estimator
BSATT
PSM BSATE
Linear Model
BSATT
FBM BSATE
Linear Model

Matching Method

Table 1: Different configurations used for effect estima-
tion. PSM indicates Propensity Score Matching and
FBM indicates Fully blocked Matching.

while SATT focuses on effect for the treated nodes V;:

SATT = —— " (.Y (1) — 0¥ (0)  (2)
Vil |/
v, €Vy

Since for each unit v;, we can observe only one of the
two potential outcomes, e.g. v;.Y (1), we need to be able

to estimate the other, e.g., v;.Y(0).
Another method for estimating causal effects is
through use of a linear model which performs regression
adjustment for covariates and has been shown to work

best in combination with matching methods (Rubin
1973)). The model is given by:

vY =Fo+7mx0, T +WTu A+e

Here, W and wv;.A are vectors where W represents a
vector of weights, T represents the estimated causal
effect and € is a noise term.

Balanced Causal Effect Estimation

In observational network data, subjects are not method-
ically assigned to treatment and control. It is likely that
due to confounding covariates with uneven distributions
in both groups, the results will be subjected to selection
bias (Arbour, Garant, and Jensen 2016|). The basic idea
of matching is that subjects that are treated should be
compared with similar subjects from the control group
for effect estimation; hence, yielding an unbiased es-
timate of causal effect. We create a subset of nodes,
B C V in which the covariate distribution is balanced
between treatment and control group. This subset is
created using a matching method which matches every
treatment node in V; with a single control node based on
the similarity of covariates and discarding the remaining
nodes, a method known as 1:1 matching (Stuart 2010)).
Table [I] summarizes the model configurations used in
this study.

Balanced SATE. Given this balanced set B C V,
we can estimate causal effect using Balanced SATE
(BSATE) as follows:

BSATE = — > (.Y (1) —0;.Y(0) (3)
|B| v;€B
where
UZ‘.T =t

and E[v;.Y (t)|v;.A] can be any regression estimator.
For example Arbour et al. (Arbour, Garant, and Jensen
2016) use Gradient Boosting tees based estimator to
predict the missing counterfactual which we also use for
our experiments.

Balanced SATT (BSATT). Similarly, given the set
of treated nodes in balanced set 11, we define Balanced
SATT as:

1

BSATT = o > (Y (1) = v Y(0)  (4)
‘ 1| v; €81
where, ©v;.Y(0) = v;.Y(0) such that,
argmin;({Dist(v;, v;)|v;. T = 0}).
Balanced linear model. The balanced linear model
is a linear model simply built on the matched nodes B.

j =

Effect Estimation Pipeline for Networks

We have broken down the causal inference process into
five main steps, in order to compare across different
network representations, matching models and effect
estimation methods. The process is as follows:

1. Represent relational and/or non-relational covariates
associated with each node v; € V in the form of

an n-dimensional vector X; € R™ using a mapping
function:

R(G,Z) - X;,Vv, €V

We describe a number of covariate representations in
the next section.

2. Define a "distance" metric to estimate pairwise dis-

tance between network nodes based on their represen-
tations as:

D:XxX —ddeR

3. For every node in treatment group, find another node

in control group with minimum distance as defined by
D. This method is referred to as 1 : 1 matching (Stu;
art 2010). We create a set of triples (v;,v;,d) such
that v; is the closest control node to the treatment
node v; based on distance d as:

{<Uiavjad)|D(XivXj) < D(X27Xk) /\’Ui,Uj,Uk S
VAT =1N0;T=0ANv,. T=0ANi#j#k}

where, X; = R(G, i), X; = R(G, j), X, = R(G, k)

4. Sort the triples generated in Step 3 based on distance

d in decreasing order and prune the top p percent of
triples (i.e., the non-matches) and use the node pairs
(vs,v;) from the remaining triples to form the set of
matched nodes B. To avoid any bias resulting from
the choice of p, we estimate effect for a range of p
values.

5. Given the remaining pairs B C V, estimate effect

using BSATT, BSATE and balanced linear model as
described in the previous subsection.

Distance Metric. We define our distance metrics
based on two different matching methods. First, we
use Propensity Score Matching (PSM) (Stuart 2010) in
which the distance metric is defined as:



Features Type Algorithm
Raw Non-Relational NA
Relational NA
Combined NA
Embeddings | Non-Relational PCA
Relational Node2Vec
Combined GraphSAGE

Table 2: Types of representations used in Fully Blocked
and Propensity Score Matching.

D(X;, X;) = (P(T|X = X;) - P(T|X = X;))°

where P(T|X = X;) is probability of a node v; belonging
to the treatment group given its representation X;. This
is normally estimated using a logistic regression model
(Stuart 2010). Second, we use Fully Blocked Matching
(FB) using Euclidean distance as suggested by (King
and Nielsen 2016)), it is defined as:

D(X;, X;) = || Xi — X

Model dependence

According to (King and Langche 2006)) model depen-
dence is defined as "the difference or distance between
the predicted outcome values from any two plausible
alternative models". Since the causal effects can be
estimated using different matching methods and rep-
resentations, the choice of representation can lead to
model dependence. The difference between predicted
causal effects based on different model choices can be
reported as a measure of model dependence (King and
Nielsen 2016). In the presence of ground truth, all mod-
els would be compared to the ground truth as a base
model.

Limiting spillover

When estimating causal effect in networks, it is very
important to account for spillover. If treatment and con-
trol nodes have edges between them, then the influence
of treatment may flow from a treated to untreated node
which is referred to as spillover effect. The presence
of edges can break the SUTVA assumption of causal
inference and challenges the validity of discovered causal
effects. In order to minimize this effect, we take specific
measures described in the Experiments section.

Network representations for matching

In attributed networks, a node can have non-relational
features, ones that do not depend on the network (e.g.,
age, gender) and relational features, ones that consider
the structure and features of other nodes within the
node’s neighborhood (e.g., number of neighbors with
the same gender). Either of these can be confounding
as discussed in (Arbour, Garant, and Jensen 2016). We
experiment with non-relational and relational features
as well as a combination of both. Each of these feature
types is described below.

Raw Features

A node v; in an attributed network has an m-dimensional
vector of attributes v;.A. A researcher may use these
attributes as features in their raw form (i.e. without
any pre-processing):

e Raw non-relational features (raw-nrel) include
only node-level attributes and all the relational fea-
tures are ignored. This representation assumes that
both treatment and outcome are independent of the
node’s ego network.

Rraw_nrel (G7 Z) = Ui-A

e Raw relational features (raw-rel) are modeled
using a set of aggregate functions applied on the
attributes of neighboring nodes, similar to features for
collective classification in networks (Sen et al. 2008]).

Suppose we have a Nbr function defined as:
Nbr(G, 1) = {vj[{vi,v;} € G.E}

Also, Agg is an aggregate function defined over a set
of m-dimensional attribute vectors A as:

Agg(A) = (F{A[L[A € A}), f({A[2]|A € A}),
- [({A[m]|A € A}))

and f can be any aggregate function defined over a
set of real values R C Rie. f(R) =r,r € R. If

Q(G, i) ={v.Alv € Nbr(G,i)}
then,

Rrawirel (Ga Z) = Aggm(Q(G7 Z)) @ Aggv(Q(G7 Z))
BAgGms(Q(G, 1))

where, @ represents the vector concatena-
tion operation and  Aggm,Aggy, AGGm,  usSe
mean(R),variance(R) and mean(R) * variance(R)
as aggregate functions respectively (Arbour, Garant,
and Jensen 2016)).

e Raw combination features(raw-comb) are sim-
ply the aforementioned vector representations con-
catenated as follows:

Rraw_comb(Ga Z) = Rraw_nrel(Ga Z) ® RT'aw_Tel (Ga Z)
Node Embedding

Network nodes can be efficiently represented using
dense embedded representations (Hamilton, Ying, and
Leskovec 2017a)). A researcher may choose one of these
embedding methods as their representation to estimate
causal effect.

¢ Emdedding non-relational features (emb-nrel)
are constructed using the Principal Component Anal-
ysis (PCA) algorithm (Jolliffe 2002). PCA can be seen
as a function which maps higher m-dimensional real
valued vectors to lower n-dimensional vectors while
preserving as much of relevant information as possible.
Formally:

PCA :RIVIxm _ RIVIxn,



The emb-nrel representation based on PCA is:
Remb_m“el(Ga Z) = POA(VA)M

where V. A is a |[V| by m matrix containing attributes
for all nodes.

e Embedding relational features (emb-rel) are
computed using Node2Vec model(Grover and
Leskovec 2016)). Node2Vec first generates a sequences
of nodes using a random walker and then learns a
n-dimensional dense vector representation for every
node in the network using these sequences in such a
way that the nodes which have similar set of neighbors
are closer in the distributed vector space and nodes
with different neighbors are far apart. Node2Vec can
be seen as a function which takes as input our network
G and returns a matrix of vector representations for
each node.

Node2Vec(G) = MIG-VIxn

Where M is a matrix. Note that this method does
not explicitly use node attributes but still captures
them as latent factor in networks with high homophily.
Given Node2Vec function, we can describe our node
representation as:

Remb ret(G,i) = Node2Vec(G)]i]

e Embedding combination features (emb-comb)
are obtained through GraphSAGE algorithm (Hamil;
ton, Ying, and Leskovec 2017b) which propagates
and aggregates attribute level information from the
node neighborhood using an unsupervised method
to generation representation. Similar to Node2Vec,
GraphSAGE can be seen as a function on a given
network G:

GSAGE(G) = MIG-VIxn

Where M is a matrix. Given this setup, we can define
our representations as:

Rembicomb(G7 l) = GSAGE(G)[Z]

Experiments

In this section we describe the datasets we have used for
our experiments, our experimental setup and results.

Datasets

Synthetic: In real world data actual causal effect are
often unknown, and to enable error analysis, we generate
synthetic data following closely the process described by
Arbour et al. (Arbour, Garant, and Jensen 2016). We
create 100 different preferential attachment networks
with 1,024 nodes each. Each new node added to the net-
work forms 3 edges based on a probability distribution
determined by node-degree. Higher degree means higher
likelihood for attachment. Each node is first initial-
ized with 50 attributes, randomly sampled from a unit
normal distribution with 1-hop network effects. The con-
founding term is generated using a linear combination
L; for node v; as:

Li = WTRrawicomb(Ga Z)

This produces a total of 40 confounders for each node.
The weight vector W is also a 40-dimensional vector in
which each value is sampled from U(—1,1). Treatment
(v;.T) for node v; is then sampled from a binomial dis-
tribution in such a way that it is dependent on weighted
confounding term L,. Spillover effect is simulated us-
ing a label propagation algorithm where the treatment
is re-assigned based on 6,;,; (proportion of nodes in
the neighborhood of v; which are assigned treatment).
Outcome (v;.Y) is generated as a function of treatment
(v;.T), confounding term L;, the proportion of treated
nodes in neighborhood,f,s, ;. Note that the best rep-
resentation to model our synthetic data is Rrqw comb
since it contains all the confounding variables. This set
of 100 networks will be referred to as synthetic dataset.

Additional parameters of the data generation model
from (Arbour, Garant, and Jensen 2016) are: true effect
= 2, B = 15 (confounding factor), Sp = 5 (Peer effect),
s =3 and € ~ N (0,1). To augment our representations,
we concatenate 6,;,,; at the end of our representation
vector X; for node v;.

Real-world dataset: We use a Twitter dataset of
hateful users by (Riberio et al. 2018]). This is a large
network with 273,344 user nodes. The edges between
nodes signify whether a user retweeted or was retweeted
by another user. We classify a user as "hateful" if
the use of abusive words in their tweets on average is
abnormally high. Given a specific date (October 24,
2017), we classify all users as hateful /not-hateful before
and after that date. Users who were not hateful before
that date are our subjects, binary outcome is determined
by whether they became hateful after specified date or
not (1/0). Treatment is whether a person saw and
retweeted a hateful user before the specified date or not
(also binary). Node attributes are constructed based on
the content of tweets using pre-trained word embeddings
(Mikolov et al. 2013). This gives us 300 attributes for
each node. To account for the spillover effect, we remove
all those control nodes which have a treatment node in
the ego network. We end up with 4,754 treatment and
8,222 control nodes for analysis. However, the entire
network is used for computing representations.

Experimental setup

For each of our datasets, we represent the nodes ac-
cording to the representations described in the previous
section. For the relational features, we only consider
1-hop neighborhood, and for PCA dimensions we con-
sidered n = 4. For emb-rel, we create 256-dimensional
vectors for each node. We do 20 walks per node with
p=1and q = 1, where walks per node, p and ¢ are all
hyper-parameters of Node2Vec model, as described in
(Grover and Leskovec 2016). For emb-comb we create
256-dimensional embeddings using GraphSAGE mean
aggregation with 20 walks per node where the aggrega-
tion type and number of walks are hyper-parameters of
the GraphSAGE model.
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Figure 1: MSE in synthetic dataset using BSATT with
FBM (left) and PSM (right).
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Figure 2: MSE in synthetic dataset using BSATE model
with FBM(left) and PSM(right)

We perform matching using FBM and PSM, and then
prune p percent of worst (most distant) matches where p
varies between 0% and 95% with uniform intervals of 5%.
For effect estimation, we consider only matched nodes.
For the synthetic data, we compute the Squared Error
(SE) and estimate the causal effect for each synthetic
network. SE is given by:

SE(E) = (E - E,)?

where FE is the estimated causal effect and F; is the
true effect. Since we have 100 networks, we report the
Mean Squared Error (MSE) values over all synthetic
networks. Ideally, in synthetic case, MSE should be 0
and Average Effect should be 2. For hateful-users where
we don’t have the ground truth for causal effect, we
report the estimated causal effect.

Results

Figures and [3| show Mean Squared Error (MSE)
using BSATT, BSATE and linear model effect estima-
tion method respectively.. Since we are unaware of the
actual effect in hateful-users dataset, we only show the
estimated causal effect in Figures [4] [5] and [6] using the
same three estimation methods. In each of these net-
works, embeddings are shown as dotted lines whereas
raw representations are shown as solid lines. We have re-
lational, non-relational and combinations for both cases
resulting in 6 unique representations for the nodes in

w
£ 3000
2000

1000

[ 20 40 60 80 ] 20 40 60 80
Percentage of matched pairs pruned percentage of matched pairs pruned

Figure 3: MSE in synthetic dataset using linear model
with FBM(left) and PSM(right)

our network. Percentage of worse matches pruned (p) is
shown on the x-axis.

First, we observe that the estimated effect significantly
varies depending on the representation used in both
datasets (Figures and @ regardless of the
choice of effect estimation method or matching method
(even with the closest matches i.e. p = 95). This shows
that the choice of network representation is important
and in a real world scenario, a researcher who is not
aware of the actual causal effect may end up with widely
differing causal effect estimates based on the specific
representation they choose. This risk is evident in Figure
[} [6] and [5] where the effect can be negative or positive
depending on the choice of network representation.

Non-relational vs. Relational Figure and
show that the relational features provide better estimates
than non-relational ones in most cases for the synthetic
dataset. This can be explained by the fact that there are
more relational confounders (i.e. 40) as opposed to non-
relational (i.e. 10) ones in the data generation model.
As expected, raw-comb is the best representation as it
contains all the original confounding covariates used in
synthetic dataset generation process.

Raw vs. Embeddings: Figure and [3] show
that the embeddings have higher Mean Squared Error
(MSE) than their raw feature counterparts of equivalent
type. This can be explained by the fact that embeddings
are approximating the actual confounding attributes
which were raw features. However, emb-rel (Node2Vec)
works surprisingly well with synthetic data ( 0 error) in
combination with linear regression and high percentage
of pruned nodes (Figure|3)). This might be happening
because after pruning, the treatment/control pairs have
the same nodes in their neighborhoods and hence the
same confounding covariates, however this needs further
investigation. Given that emb-comb (GraphSAGE)
works on a similar principle, one may expect similar
results from it. Although, Figure [3] shows that it works
better than other representations but not it is not as
good as emb-rel when only the best matches are kept.

PSM vs FBM: In Figures[I]and [2] we see that PSM
performs relatively better than FBM in terms of MSE.
For our best representation (raw-comb) of synthetic
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Figure 4: Effect estimate in hateful-users dataset using
BSATT with FBM(left) and PSM(right).

data we can see that the MSE is close to 0 after pruning.
In Figure 3| we can see that PSM is less noisy than the
FBM which produces unexpected spikes. In Figure [4]
there is less variance in most representations using FBM
method, however emb-rel is an important exception.

BSATT vs. BSATE vs. linear model: While
the BSATT and BSATE estimations benefit more from
the process of matching, as shown in Figure [} the best
results are obtained when using a combination of match-
ing with linear model as shown in Figure [3| for synthetic
data. This is because the underlying data generation
process specifies a linear correlation of attributes with
outcome and treatment. In hateful-users dataset linear
model is less noisy and produces less variance in esti-
mated effect. See Figure [4 and Figure [f] for comparison.
BSATE in Figure p|is the noisiest of all methods, most
likely because of the complexity of the underlying Gra-
dient Boosted trees model which may cause problems
while trying to adjust for noisy covariates.

We also note that the methods which perform well
on synthetic dataset estimate a positive effect for most
representations in hateful-users dataset (Figure @ An-
other observation is that in hateful-users dataset, there
is a positive spike in effect when a large number of nodes
are pruned, leaving only the best matches. Both of these
observations are in-line with our speculation that effect
should be positive (i.e., retweeting "hateful" users can
make you "hateful").

Discussion and conclusion

We presented an empirical study that highlights the
model dependence problem in causal effect estimation
in networks. Based on the results, we can draw the
general conclusion that without knowledge of the under-
lying data generation process, causal effect estimates in
networks can vary widely in both magnitude and sign.
Unfortunately, in real world scenarios, the data genera-
tion process is unknown and the causal effect estimates
depend on the feature representation, the matching
model and the estimation method. This has important
implications for any causal inference studies based on
real-world network data that was not designed for causal
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Figure 5: Effect estimate in hateful-users dataset using
BSATE with FBM(left) and PSM(right).
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Figure 6: Effect estimate in hateful-users dataset using
linear model with FBM(left) and PSM(right).

inference. At the same time, matching methods reduce
the estimation bias and propensity score matching leads
to less noisy estimates than fully-blocked matching when
varying the match threshold.

For synthetic data, experimental parameters which re-
flect the underlying data generation process for networks
give the best estimations for synthetic data. Propen-
sity score matching gives more accurate estimates than
fully-blocked matching. Embeddings have higher error
when the actual confounders are raw features. Linear
model performs better than BSATT and BSATE, and
a combination of relational and non-relational features
gives the best estimates. We also discovered that rela-
tional embeddings with a balanced linear model work
surprisingly well.

Further investigation is needed to understand why
some embedding models lead to better causal effect
estimates than others. Another fruitful direction for
future work would be to understand the role of different
network structures on the estimated effects by identify-
ing which representations, effect estimation models and
matching methods are more appropriate for different
network generation models and parameters.
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