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Abstract

Nonparametric structural causal models provide statistical
models for the data generating distribution, and allow the for-
mal definition of causal impact of an intervention on an out-
come of interest. Formal identification results establish non-
testable assumptions that allows one to identify the causal
quantity of interest as an estimand of the data distribution.
Once we accept this estimand as a best or perfect approxima-
tion of the causal quantity of interest, we are left with a pure
statistical estimation problem of learning the estimand based
on knowing that the true data distribution falls in a speci-
fied infinite dimensional statistical model. Efficiency theory
teaches us that the estimation of the data distribution or its
relevant part requires machine learning at a rate of conver-
gence faster than n ™/, combined with targeting the estima-
tor so that it solves the critical efficient score equation for
the target estimand. In this paper we discuss the previously
introduced Highly Adaptive Lasso Minimum Loss Estima-
tor (HAL-MLE) of the data distribution, which corresponds
with minimizing an empirical risk over a linear span of tensor
product of 0-order spline basis functions. It has been shown to
converge at a rate faster than n~ 1% as long as the true func-
tion is cadlag and has finite sectional variation norm. In this
short paper we demonstrate that by selecting a large enough
L1-norm of the vector of coefficients associated with the col-
lection of basis functions, the estimator preserves its n~l/4
rate of convergence, while solving the efficient score equa-
tion for any desired pathwise differentiable target feature of
the data distribution. As a consequence, an undersmoothed
HAL-MLE results in an efficient plug-in estimator of the de-
sired estimand, and moreoever, it will also be efficient for any
other smooth estimand of the data distribution. We demon-
strate this undersmoothed HAL-MLE for estimation of the
average treatment effect.
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Introduction

Drawing causal inference from observational and experi-
mental data requires a number of careful steps Petersen and
van der Laan (2014); van der Laan and Rose (2011); Pearl
(2009). To start with one defines a causal model, such as
a structural causal model, that consists of a collection of
functions that describe how endogenous nodes are gener-
ated as a function of parent endogenous nodes and exoge-
nous errors Pearl (2009). These functions are realistically
modeled, so that such structural causal models typically
mostly incorporates time-ordering and exclusion restriction
assumptions, while minimizing any other type of assump-
tions. Some of the endogenous nodes represent infervention
nodes, while one of the final endogenous nodes represents
the outcome of interest. An intervention-specific counter-
factual outcome is then defined by replacing the interven-
tion node equations by the desired intervention one wants to
study. This modified system of structural equations now de-
scribes a post-intervention distribution for the endogenous
nodes, and, in particular, for the outcome. One can now de-
fine a causal quantity of interest as the mean outcome un-
der this post-intervention distribution, or a contrast involving
two different interventions (e.g., an active and control treat-
ment). One then establishes a link between the endogenous
nodes and the observed data, and thereby a link between
the observed-data distribution and the full-data distribution
described by the structural causal model. In particular, the
structural causal model implies the statistical model, the set
of possible observed-data distributions. One then addresses
whether the causal quantity can be described as a function of
the observed-data distribution. This process of causal identi-
fication generally involves non-testable assumptions, such as
conditional independence assumptions on the exogenous er-
rors. If the assumptions are deemed plausible, then identifi-
ability result provides a causal interpretation of an estimable
parameter of the observed-data distribution.

The statistical estimation problem is now defined in terms
of the statistical model and estimand, and stands apart from
the previous causal modeling steps. At this point, we can
draw on statistical theory to guide the construction of effi-
cient estimators of the estimand of interest. This paper fo-
cuses on a general technique for efficient estimation in a re-



alistic statistical model.

Due to the curse of dimensionality Donoho (2000), max-
imum likelihood estimation is often ill defined, and a regu-
larized MLE, for example, one based on a sieve, is generally
too biased for the estimand, and therefore fails to produce
statistical behavior typical of MLEs, namely asymptotic lin-
earity and normality. Global-bias-reduced regularized MLE
sometimes provides a path forward (e.g., undersmoothing
as in Newey (2014); van der Vaart (1998); van der Laan
(2006)), but the success depends on the particular sieve,
and choices of key tuning parameters control the level of
smoothing. General guidelines on how to undersmooth are
often not available, which makes these techniques difficult
to utilize in practice.

In response to this curse of dimensionality issue with
the regularized MLE, the current literature has proposed
three general methods for construction of efficient estima-
tors. Each of these methods rely on the estimand being a
pathwise differentiable functional of the data distribution,
whose derivative is identified by the so-called canonical gra-
dient. The canonical gradient represents the score of the sub-
model through the data distribution in which the target esti-
mands locally changes maximally Bickel et al. (1997). By
the convolution theorem, a regular estimator is efficient if
and only if it is asymptotically linear with influence curve
equal to the canonical gradient. The estimation error of such
estimators behaves approximately (i.e., in first-order) as the
empirical mean of the canonical gradient at the true data dis-
tribution.

Each of these three methods uses the canonical gradient
as principal ingredient to target the estimator towards the es-
timand. The one-step estimator adds to an initial plugin esti-
mator of the estimand the canonical gradient at the initial es-
timator Bickel et al. (1997). The estimating equation-based
framework assume the canonical gradient can be expressed
as an estimating function in the target estimand, possibly in-
dexed by nuisance parameters. The estimator is the solution
of the resulting estimating equation Robins and Rotnitzky
(1992); van der Laan and Robins (2003). A targeted mini-
mum loss estimation updates an initial estimator of the data
distribution with a minimum loss estimator of the least fa-
vorable parametric submodel through the initial estimator,
and estimates the estimand with the corresponding plug-in
estimator van der Laan and Rubin (2006); van der Laan
(2008); van der Laan and Gruber (2015).

Each estimator requires estimation of key nuisance pa-
rameters. For example, in causal inference, these are often
objects like the conditional mean of the outcome given in-
tervention nodes and other endogenous nodes. The three
frameworks above accommodate the use of state-of-the-art
machine learning techniques. For example, targeted mini-
mum loss estimators are often studied in combination with
a cross-validation-based ensemble machine learning tech-
nique termed super learning. Super learning builds an en-
semble of candidate machine learning techniques. Impor-
tant oracle properties have been established that demonstrate
conditions whereby the ensemble converges essentially at
the same rate as the theoretically optimal ensemble van der
Laan and Dudoit (2003); van der Vaart et al. (2006); van der

Laan et al. (2006). Super learning has been shown to per-
form well in a variety of settings van der Laan et al. (2007);
Polley et al. (2011).

Recently, van der Laan (2015) and Benkeser and van der
Laan (2016)van der Laan (2015); Benkeser and van der Laan
(2016) introduced the Highly Adaptive Lasso MLE (HAL-
MLE) machine learning algorithm. This technique yields
learners whose error converges to the optimal error at rate
faster than ~'/4 under minimal conditions. Thus, including
this learning as a candidate in a super learner guarantees this
rate for the super learner as well. As a consequence, utilizing
such learners to estimate key nuisance parameters in one of
the three estimating frameworks described above yields ef-
ficient estimators of the estimand in great generalityvan der
Laan (2015).

In this work, we revisit the undersmoothing paradigm
in the contet of HAL-MLE. We argue that using a prop-
erly undersmoothed HAL-MLE of the data distribution (or
the relevant nuisance parameters of the data distribution)
results in a generally efficient plug-in estimator for path-
wise differentiable target estimands. Here, we mainly dis-
cuss the formal results, provide intuition for the proof; the
formal (quite involved) mathematical proofs will be pre-
sented elsewhere. We present an application to estimating
the treatment-specific mean, a canonical problem in causal
inference. We demonstrate through a simulation that indeed
the theory works out as predicted. Due to this contribution,
we can conclude that this undersmoothed HAL-MLE pro-
vides a fourth general method for constructing efficient esti-
mators, beyond the three general targeted methods presented
above.

Defining the HAL-MLE
Functional estimation problem

Suppose we observe O1,...,0, ~iq Py € M, where O
is a Euclidean random variable of dimension & with support
O contained in [0,7,] € RF. Let Q : M — QM) =
{Q(P) : P € M} be a functional parameter of the data
distribution. It is assumed that there exists a loss func-
tion L(Q) so that PoL(Q(FPp)) = minpea PoL(Q(P)),
where we use the notation Pf = [ f(0)dP(o). Thus,
Q(P) can be defined as the minimizer of the risk func-
tion Q — PL(Q) over all @ in the parameter space.
Let do(Q, Qo) = PyL(Q) — PyL(Qop) be the loss-based
dissimilarity, which for most loss functions behaves as a
square of an L?(P)-type norm (e.g., Kullback-Leibler di-
vergence for the log-likelihood loss). We assume that Moy =
suppe v Po{L(Q(P))—L(Qo)}*/do(Q(P), Qo) < oo and
My = sup,co pem | LIQ(P))(0) |< co. These latter two
assumptions are sufficient to guarantee good theoretical be-
havior of cross-validation-based estimator selection. In par-
ticular, these assumptions provide conditions whereby the a
cross-validation-selected estimator is asymptotically equiv-
alent with an oracle selector (see above super-learner refer-
ences).

Parameter space for functional parameter (): Cadlag
and uniform bound on sectional variation norm. We as-
sume that the parameter space Q(M) = {Q(P) : P € M}



is a collection of multivariate real-valued cadlag functions
on a cube [0,7] C IR* with finite sectional variation norm
| Q(P) |k< C“ for some C* < oo Gill et al. (1995);
van der Laan (2006, 2015): i.e., for all P, Q(P) is a k-

variate real-valued cadlag function on [0,7] C ]R;O with
| Q(P) ||< C*, where the sectional variation norm is de-

fined by
/ | dQs(us) | -

I Q IIs=Q0) + Z
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For a given subset s C {1,...,k}, Qs : (05, 7s] = R is de-
fined by Qs(xs) = Q(xs,0_;). That is, Qs is the s-specific
section of () which sets the coordinates in the complement
of subset s C {1,...,k} equal to 0. For a given vector
z € [0,7], we define z; = (z(j) : j € s). Sometimes,
we will also use the notation x(s) for .

Note also that [0, 7] = {0} U (Us(0s, 75]) is partitioned in
the singleton {0}, the s-specific left-edges (05, 75] x {0_s}
of cube [0, 7], and, in particular, the full-dimensional inner
set (0, 7] (corresponding with s = {1,...,k}). Therefore,
the above sectional variation norm equals the sum over all
subsets s of the variation norm of the s-specific section over
its s-specific edge. It is also important to note that any cad-
lag function ) with finite sectional variation norm can be
represented as

/(os,wﬁ] dQs(us).

That is, Q(z) is a sum of integrals up to x5 over the s-
specific edges with respect to the measure generated by the
corresponding s-specific section (). Thus, we refer to @
both as a cadlag function and as a measure. We note that this
representation represents () as an infinitesimal linear combi-
nation of indicator basis functions * — @5 ,,, () = I(zs >
us) indexed by knot-point us with coefficient dQs(us):

sC{1,....k}

Q) = Q) + Z / barn, ()4Qu (1),

sc{1,..

Note that the L1-norm of the coefficients in this representa-
tion is precisely the sectional variation norm || @ ||%.

Definition of the HAL-MLE

Let Q(C*) = {Q € DI[0,7] :|| Q |li< C"} be the class
of cadlag functions with sectional variation norm bounded
by C*, which is thus the parameter space for Q). Let Cy =||
Qo || be the sectional variation norm of the true @y, and
let C* be an upper bound guaranteeing that Cy < C*. For a
data adaptive selector C),, we define the HAL-MLE as

n=arg min P,L(Q). 1
Q g, (@) (M
We will restrict the minimization to () for which for all sub-
sets s C {1,...,k}, dQs(us) is a discrete measure with a
finite support {z, ; : j = 1,...,n,}, where this support is
chosen fine enough so that its resulting bias is negligible.

Typically, one can actually prove that the unrestricted HAL-
MLE (1) is attained at a discrete @,,. Generally, if O in-
cludes observing X where L(Q)(O) depends on ) through
Q(X), we recommend to select the support of dQ; as a sub-
set (or whole set) of the observed data X;(s),i=1,...,n
The above representation for functions in D[0, 7] shows that
all such discrete () are represented by a finite dimensional
linear combination of basis functions indexed subset s and
knotpoint z,_ ;. Therefore, in this case the HAL MLE can be

represented as Qn = Y, ic 7 (5) Bn(S,J)Ps,j, Where

> B(s,0)e(s,9) |,

$,J€ETn(s)

Bn=arg min L
ﬁv“ﬁ”lgcn

and 7, (s) is the collection of support points of the s-specific
section @y, s of Q.

The data adaptive selector C), defining the Li-norm re-
striction will be selected larger or equal than the cross-
validation selector

Cn,(‘v al"g IIllIl Y7 Z n 1))) )

where Pn > Pn,v are the empirical distributions of the vali-
dation and training sample, respectively, corresponding with
the v-th sample split in a typical V-fold cross-validation
scheme. Here Qc( v) 1s the HAL-MLE applied to the
training sample corresponding with the v-th sample split.
For any selector C,, < C" < oo for which P(C,, >
Co) — 1, we have that dy(Q,,, Qo) = op(n~1/2~k)) for
a(k) =1/(2(k + 2)) van der Laan (2015). In particular, we
have this rate of convergence for the cross-validation selec-
tor, which is optimal for estimation of () as a whole.

Efficient estimation with the undersmoothed
HAL-MLE

Let ¥ : M — IR represent the statistical target parameter of
interest, so that ¥(FP,) is the estimand we aim to learn. We
assume that U is pathwise differentiable at P € M in the
sense that LU (P,) |6:0 = PD(P)S for arich collection of
submodels { P, : €} through P at ¢ = 0 with score S. If the
gradient D(P)(O) is chosen to be a score itself (or an ar-
bitrarily fine approximation of a score), then it is called the
canonical gradient, which we denote by D*(P). As above,
letQ: M — QM) ={Q(P) : P € M} be a functional
parameter such that ¥(P) = ¥y (Q(P)) for some ¥y: we
will abuse notation, and simply use ¥(Q) and ¥ (P) inter-
changeably. Let G : M — G be a functional nuisance pa-
rameter so that the canonical gradient D*(P) only depends
on P through (Q(P),G(P)). Let Ry(P, Py) = ¥(P) —
U(Py) + PyD*(P) be the exact second-order remainder for
the target parameter expansion. This remainder Ry (P, Py)
only involves differences between (Q, G) and (Qo, Go) so
that we will use notation D*(P) = D*(Q(P),G(P)) and
RQ(P7 PO) = RQ(Qa Ga Q07 GO)



Consider that for a plug-in estimator ¥(Q,,) of ¥(Qy),

= (P — Po)D*(Qn, Go) — P.D*(Qn, Go)
+ RQ(QT“ GOa QOa GO)

Assuming that {D*(Q, Q) : @, G} falls in a class of cad-
lag functions with a universal bound on the sectional vari-
ation norm (which is, importantly, a Donsker class), using
empirical process theory we can establish a simple L2(P,)-
consistency Po{D*(Qn,Go) — D*(Qo,Go)}* —, 0 im-
plies (Pn - PO)D*(QTH GO) = (Pn - PO)D*(Q07 GO) +
op(n~1/2) van der Vaart and Wellner (1996). In addition,
the above stated convergence do(Q,, Qo) = op(n~1/?)
will generally imply (under a strong positivity assump-
tion) that Ro(Qn,Go,Qo,Go) = op(n~/?). In so-
called double-robust causal inference or censored data
problems the second-order remainder only involves cross-
terms like (Q, — Qo)(G, — Gp) so that we even have
R2(Qn, Go, Qo, Go) = 0 van der Laan and Robins (2003).
Thus,

U(Q@n) — ¥(Qo)
= P,D*(Qo,Go) — P.D*(Qn, Go) + op(n~Y/2).

The only remaining obstacle in proving efficiency of the
HAL-MLE is that we need P, D*(Q,,,Go) = op(n~1/?).
We can show that this can be proven under two fundamen-
tal conditions: 1) the loss function L((Q)) must generate the
canonical gradient as a score; 2) C;, must be selected “large
enough”. We now discuss these two conditions.

Canonical gradient of target parameter in tangent
space of loss function: We assume that the loss function
L(Q) is such that there exists a class of submodels {Q” :
€} C Q(M), indexed by a choice h,through @ at e = 0, so
that for any G € G, one of these h-specific submodels gen-
erates a score that equals the canonical gradient D*(Q, G)

at (@, G):
L =pQG)

e=0

Since the canonical gradient is an element of the tangent
space and thereby typically a score of a submodel, this gen-
erally holds for @) defined as the density of P and the log-
likelihood loss L(Q) = — log Q). However, for any @ so that
U (P) depends on P only through @ there are typically more
direct loss functions L(Q), so that the loss-based dissimilar-
ity do(Q, Qo) = PyL(Q) — PoL(Qo) directly measures a
dissimilarity between ) and @, for which this condition
holds as well.

Choosing C', large enough: A key property of an MLE
such as the HAL-MLE is that it solves many score equa-
tions of the form 0 = P,S,(Q,), where S,(Q,) =
ELQ1)|,_, = 0, generated by paths {Q}: . : €}, such
that

he() = Q(0)(1 4 €n(0))
. Z /¢m (1 + eh(s, us))dQs (us), ()

sC{1,..

where h is any uniformly bounded function such that ||

h e I5=Il Qu | for a small enough neighborhood ¢ €
(—0,9). The latter constraint translates into a linear con-
straint r(h, Q,,) = 0, where

r(h, Qn) =| Q(0) | 2(0)

+ Z /sbsus

sc{1,..

(s,us) | dQs(us) | . (3)

The canonical gradlent D*(Qn, Go) is well-approximated
by one of these h-specific scores Sy, (Q,), but not necessar-
ily by one that satisfies this linear constraint r(h, Q,) = 0.
As the dimension of the fit of the HAL-MLE (@,, grows,
i.e., as more basis functions have a non-zero coefficient, so
too does the dimension of the linear space spanned by these
score equations { P, Sy (Q,) : h,rn(h, Q) = 0}. At some
large-enough dimension, this linear span of score equations,
in spite of the constraint, will be rich enough so as to ap-
proximately solve the efficient score equation up to a term
that is op(n~'/2). Indeed, we can formally prove that the
main condition for P, D*(Q,,, Go) = op(n~1/?)is

d
min —L ) = op(n=1/3).
o e LQu(6) = op(n )
“4)

The right-hand side can typically be bounded in terms of

5,38 (5.3)70 | P,os,; |, so that a sufficient condition
for (4) is that the HAL-MLE fit selects sparse enough ba-
sis functions. In particular, a sufficient condition is that
mins,jejn(s),ﬁn(s,jﬁéo ‘ anﬁs,] |— Op( _1/2), but, this
rate can be lowered by utilizmg that @,, converges to (o,
P,, approximates Py, and Py—5- 05 L(Qo)(¢s,;) = 0 for all
(s,7) (since Qo minimizes PyL(Q)). For example, using
the known L?(Py)-rate of convergence of Q,,, this rate for
the support of the most sparse basis function in ),, can be
lowered to Op(n~'/4+*()/2) "and, if one is able to prove
| @n—Qo |leo= 0p(n~1/%), then even a rate of Op(n~1/4)
would be sufficient.

Application of undersmoothed HAL-MLE to

provide causal inference for the ATE
Let O = (W,A,Y) ~ Py, where Y € {0,1} and A €
{0,1} are binary random variables. Let (A, W) have sup-
port in [0,7] € R, where various of its components are
discrete and thereby supported on a finite grid within [0, 7].
Let GW) = Ep(A|W)and Q(A, W) = Ep(Y | A,W).
Assume the positivity assumption G (W) > 0 > 0 for some
d > 0; Qo and Gy are cadlag functions with || Qo [|x< C*
and || Gy ||5< C% for some finite constants C*, C§; § <
Qo < 1 — 6 for some & > 0. This defines the statistical
model M for P,.

Let ¥ : M — IR be defined by ¥(P) = EpEp(Y |
W, A = 1). For simplicity, we focus on estimation of this
treatment specific mean, but the presentation trivially gen-
eralizes to the average treatment effect (ATE) U(P) =
EpEp(Y | WA = 1) — EpEp(Y | A = 0,W).
Let Q@ = (Qw,Q), where Qy is the probability distri-
bution of W. Note that ¥(P) = (Q) QwQ(-,1).



We have that U is pathwise differentiable at P with
canonical gradient given by D*(Q G) = A/JGIW)(Y —
QUAW)) + Q(LW) — ¥(Q). Let L(Q)O) =
—{Y1ogQ(A, W)+ (1 -Y)log(1 — Q(A,W))} be the
log-likelihood loss for Q, and note that by the above bound-
ing assumptions on (), we have that this loss function has
finite bounds M; < oo and Myy < oo. Let D}(Q,G) =
A/G(Y — Q) be the Q)-component of the canonical gra-
dient, D3(Q) = Q(l W) — ¥(Q) the Qw-component,
and note that D*(Q, G) = D*(Q G) + D3(Q). We have
U(Q) — ¥(Qo) = —RD*(Q,G) + Rao(Q, G, Qo, Go).
where
o G-Gy -~ =
R2(Q, G, Qo Qo) = Po——=—(Q — Qo)-
We have suppe g || D*(Q(P),G(P)) [l;< C(C*,Cy)
for some finite constant C' implied by the universal
bounds (C*,C¥) on the sectional variation norm of
Q, G._Wg also note that, using Cauchy-Schwarz inequality,
Ry0(Q, G, Qo,Go) < 5 || Q—Qo |lp, | G—Go || p,» where
If 3= ff2 )dPo(0).

HAL-MLE

Let Q = LogitQ and denote L(Q) by L(Q). Let Q¢ =
argming o+ <c PnL(Q) be the C-specific HAL-MLE for
a given bound C' on the sectional variation norm. Let C), <
C" be a data adaptive selector that is larger or equal than
the cross-validation selector, so that P(C, ., < C, <
C") = 1. Let Q, = Qc¢, n, and Qw,, be the empiri-
cal probability measure of Wy, ..., W,,. We can represent
Qn = Zs,jeejn(s) Bu(8,7)¢s,j> where ¢ ; = I(W(s) >
w ;) for a knot point w, ;. By our rate of convergence re-
sults on the HAL-MLE we have that | Q, — Qo ||p,=
Op(n~1/4=2( ) The HAL-MLE of ¥(Q) is the plug-
in estimator ¥(Q,) = 237 1/(1 + exp(—Qn(W;)).
Note that P,D%(Q,) = 0 for any Q,. Thus, for show-
ing that P,D*(Qn,Go) = op(n~'/2), we only need

Di(Qn, Go) = op(n~'/?).

According to our theory, selecting C,, as the smallest con-
stant larger than C), ., for which there is a selected ba-
sis function that has support smaller than a constant times
n~1/4+(k)/2 would make sure that P,D3(Q,,Go) =
op(n~'/?) and thereby, assuming this C,, exists while be-
ing smaller than some finite constant C*, that ¥(Q),,) is
asymptotically efficient. Unfortunately, this global (i.e., not
parameter specific) undersmoothing condition is not help-
ful in practice since we do not have a criterion for selecting
the constant in front of the rate. Therefore, we implemented
the following selector C), instead. Let G, be an HAL-MLE
of G using cross-validation for selecting the L;-norm, and
o2 = P,Di(Qc, .., n,Gn)? be the resulting estimator of
the sample variance of the canonical gradient. We select
C), as the smallest constant C' larger than C,, ., for which
| P.Di(Qc.m,Grn) |< 0n/(n/?logn). In this manner,
this selector C,, guarantees that indeed P, D3} (Q,,Gp) =
op(n~1/2), so that the efficiency ¥(Q,,) follows.

Simulation results for undersmoothed HAL-MLE
of treatment specific mean

We evaluated the proposed estimators via sim-
ulation. We drew 1000 samples of size n €
{250, 500, 1000, 2000, 4000} from the following data
distribution. We let Wy = 47 — 2, where Z was drawn from
a Beta(0.85,0.85) distribution. W5 was independently drawn
from a Bernoulli(0.5) distribution. Given W = (w1, wy) we
drew A from a Bernoulli distribution with the probability
A = 1 equal to Go(wi,ws) = expit(w; — 2wiws).
Given A = a, and W = (wy,wz) we drew Y
from a Normal(Qo(wq,ws), 0.33%) distribution with
Qo(w1,wq) = expit(w; — 2wy ws). As predicted by theory,
the bias of the estimator is appropriately controlled and the
variance of the estimator approaches the efficiency bound
in larger samples (Figure 1). The empirical average of the
canonical gradient is appropriately controlled (top right)
and our selection criteria for the HAL tuning parameter
appears to also satisfy the global criteria stipulated by
equation (4). At all sample sizes, the sampling distribution
of the scaled and centered estimators are well-approximated
by the asymptotic distribution well.
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Figure 1: Left column top to bottom: bias, variance, and
mean squared-error (all scaled by n'/?) of undersmoothed
HAL-MLE. Right column top to bottom: scaled empirical
average of canonical gradient, empirical average of quan-
tity given in equation (4), sampling distribution of scaled
and centered estimator. The dashed lines in the variance and
mean-squared error plots denote the efficiency bound. The
reference sampling distribution for the estimators is a mean-
zero Normal distribution with this variance.



Discussion

Amongst the three standard frameworks for efficient estima-
tion (estimating equations, one-step estimation, and TMLE),
TMLE is often seen to be the most robust. This robustness
may be attributed to its construction as a substitution esti-
mator, which ensures it always respects global constraints
on the target parameter and model. The comparison be-
tween TMLE and the undersmoothed HAL-MLE is less
clear since both are substitution estimators. In causal in-
ference and missing data settings, TMLE may behave er-
ratically since it relies on extra model fitting that involves
inverse probabilities of treatment and/or censoring. When
these inverse weights are large, fitting may become un-
stable. Thus, the undersmoothed HAL-MLE may be more
robust for weakly identifiable estimands. Nevertheless, in
causal inference problems there might be substantial knowl-
edge about the treatment and censoring mechanism, and the
TMLE incorporates this knowledge to remove bias with re-
spect to the target estimand. We expect that TMLE will be
superior in such settings. However, in complex observational
studies, where such knowledge on treatment and censoring
mechanisms is lacking, and weak identifiability is a potential
issue, the undersmoothed HAL-MLE might be the preferred
procedure. Therefore, in future work we hope to establish
a marriage between these two general methods that inherits
the favorable properties of both procedures.
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