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Abstract

This paper tackles hard incomplete (missing) data problems
such as those in which missingness in a variable is caused
by itself. To address these problems we develop a new tech-
nique that jointly harnesses model and data as opposed to
existing methods that exploit properties of the model alone.
We present necessary and sufficient conditions under which
consistent estimates of target quantities can be computed. In
sharp contrast to other techniques used for dealing with simi-
lar problems, we do not make any parametric assumptions.

Introduction

Analysing and drawing inferences from missing data can be
extremely challenging when the dataset contains variables
that are themselves causes of their missingness; this type
of missingness known as self-masking missingness, is be-
lieved to be the most commonly encountered type in prac-
tice [Osborne, 2012; Sverdlov, 2015; Adams, 2007; Mohan
etal., 2018]. Examples include smokers not answering ques-
tions pertaining to their smoking behavior in insurance ap-
plications, people with very high and very low income not
disclosing their income and people of certain age groups not
revealing their age.

Recent years have witnessed a growing interest in han-
dling missing data using graphical models that encode
assumptions about the underlying missingness process.
[Daniel et al., 2012; Mohan et al., 2013; Shpitser et al.,
2015; Mohan and Pearl, 2018]. Given a target quantity ()
and a graph G, @ is recoverable from G if there exists an
algorithm that can consistently estimate () for all data gener-
ated by G, else () is non-recoverable. Such non-recoverable
(Q, G) pairs which we call hard missing data problems (or
hard problems) are the focus of this paper. Examples include
@ = P(O|do(t)) and the self-masking model shown in fig-
ure 1 and Q = P(X) and the self-masking model shown in
figure 2 (b). While previous work treated recoverability as
a property of graph alone, in this paper we develop general
techniques to solve hard missing data problems by harness-
ing the properties of both graph and data.

In the following section we review missingness graphs i.e.
graphical models for handling missing data [Mohan et al.,
2013].
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Figure 1: Missingness Graph in which outcome causes its
own missingness

Missingness Graphs

Let G(V, E) be the causal DAG where V is the set of nodes
and E is the set of edges. Nodes in the graph correspond to
variables in the data set and are partitioned into five cate-
gories, i.e. V=V, UV, UUUV*UR.

V, is the set of variables that are observed in all records in
the population and V,,, is the set of variables that are miss-
ing in at least one record. Variable X is termed as fully ob-
served if X € V, and partially observed it X € V,,. R,,
and V;* are two variables associated with every partially ob-
served variable, where V;* is a proxy variable that is actually
observed, and R, represents the status of the causal mech-
anism responsible for the missingness of V;*; formally,

" v; ifry,, =0
V; :f(rvmvi) = { m

ifr,, =1

V* is the set of all proxy variables and R is the set of
all causal mechanisms that are responsible for missingness.
Unless stated otherwise it is assumed that no variable in
Vo, U V,, UU is a child of an R variable. U is the set of
unobserved nodes, also called latent variables. Two nodes
X and Y can be connected by a directed edge i.e. X — Y,
indicating that X is a cause of Y, or by a bi-directed edge
X «¢----» Y denoting the existence of a U variable that
is a parent of both X and Y. This graphical representation
is called a Missingness Graph (or m-graph) [Mohan et al.,
2013]. P(V*,V,, R) is called the observed data distribution.

Proxy variables may not always be explicitly shown in
m-graphs in order to keep the figures simple and clear. Con-
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Figure 2: m-graphs in which (a) P(X) is recoverable, (b)
P(X) is non-recoverable.

ditional Independencies are read off the graph using the d-
separation criterion Pearl [2009]. For any binary variable X,
2’ and x denote X = 0 and X = 1 respectively.

Example 1. In the m-graph in figure 1, T' denotes the treat-
ment administered to patients and O denotes the outcome.
While T is observed for all patients, O is observed only for
some of them. The edge from O to R, indicates that the miss-
ingness is of self-masking type. V, = {T}, V,,, = {O},
V*={0*}, U =0and R ={R,}.

Missingness Mechanisms

Based on Rubin [1976], missing data problems can be classi-
fied into Missing Completely At Random (MCAR) , Missing
At Random (MAR) and Missing Not At Random (MNAR).
In this paper we use the graph based definition of these
mechanisms [Mohan et al., 2013].

An m-graph G depicts an MCAR problem if
(Vin, Vo)LL R holds in G, an MAR problem if V,,, Il R|V,
holds in G and an MNAR problem otherwise. For example,
figure 2 (a) depicts MCAR, figure 3 (c) depicts MAR and
figure 1 depicts MNAR missingness problems. Among
these, joint distribution (Q = P(V,,V,,)) is always con-
sistently estimable (i.e. recoverable) when missingness is
either MCAR or MAR (Mohan et al. [2013]). However this
is not true for MNAR missingness. As such all hard missing
data problems discussed in this paper belong to the MNAR
category.

Recoverability as a property of m-graph

In this section we exemplify the notions of recoverability
and non-recoverability as a property of the m-graph.

[ X" [ R, | P(X",R) |

0 0 0.3
1 0 0.2
m 1 0.5

Table 1: Observed Data Distribution

Suppose X is a binary variable corrupted by missing val-
ues. The dataset with missing values is shown in table 1.
Figures 2 (a) & (b) depict two distinct (but statistically indis-
tinguishable!) processes that could have generated this data.

! Although d-separations are testable implications of a graphi-
cal model, under missingness not all d-separations are testable. In

In figure 2 (a) missingness is generated by a purely random
process while figure 2 (b) depicts self-masking missingness.

Recoverability: Consider the problem of recovering
P(X) given the m-graph G in figure 2 (a).

Since X 1L R, in G we have,
P(X) = P(X|R; =0)
Using equation 1 we can rewrite the above as,
P(X)=P(X*|R, =0)

By showing that P(X) is a quantity that can be computed
from the observed data distribution, we have established its
recoverability. To do this we used the assumption X Il R,
embedded in the m-graph. Hence in this case recoverability
is a property of the m-graph alone. The recovered distribu-
tion P(X) is shown in table 2.

[(XTPX) ]
0 35
| 25

Table 2: Recovered Distribution

Non-recoverability: Now consider the problem of recov-
ering P(X) given the m-graph in figure 2 (b). R, is depen-
dent on X and we have no additional information regarding
this dependence. It could be that X is missing only when its
value is 1 or it could be that X is missing only when its value
is 0. In the former case P(z') = 0.3 where as in the latter
case P(z') = 0.8. Using the available information in G it is
not possible to find the (true) value of P(X) even if we are
given infinitely many samples i.e. P(X) is non-recoverable.
In fact, non-recoverability of P(X) would persist even if G
had more variables in it (formally proved in [Mohan et al.,
2013; Mohan and Pearl, 2014a]).

Inability to handle hard problems such as self-masking
missingness is a major deficiency in the field of missing
data. Recent papers such as Shpitser [2016] and Mohan et al.
[2013], and missing data text books such as Enders [2010]
have called attention to the problem of recoverability in self-
masking models. Standard Bayesian network textbooks such
as Darwiche [2009] (chapter 17) and Koller and Friedman
[2009] (chapter 19) discuss models similar to that in figure
1 and have shown that none of the existing methods such
as the EM algorithm can recover parameters in self-masking
m-graphs. In the following section we develop techniques
to recover queries in hard problems and thus eliminate this
deficiency in the field.

particular no statement of independence between a variable and its
missingness mechanism ( X 1l R,) is testable [Mohan and Pearl,
2014b].



Recoverability as a property of both m-graph
and missing data

We exemplify below a procedure that exploits the properties
of both graph and data to recover the joint distribution in a
self masking model.

Example 2. Consider the problem of recovering P(O,T)
given the m-graph G in figure 1 and the missing data distri-
bution, P(T, O*, R,). Let both T and O be binary variables.
We will first recover P(T|O) and then use it for recovering
P(O).
Using T1L R,|O and eq 1, P(T|O) can be recovered as,
P(T|0) = P(T|0, R, = 0) = P(T|0*, R, = 0)

Since the variables are binary, P(T) = %", P(T|0)P(O)
vields the following equations:

P(t') = P(t]0')P(0) + P(¥'|0) P(0)
P(t) = P(t|o')P(d") + P(t|o)P(0)

On substituting P(T|O) in the equations above with its re-
covered estimand we get,

P(t')y = P('|O* =0,7))P(d') + P(t'|O* = 1,7])P(0)
P(t) = P(t|O* = 0,r,)P(d') + P(t|O* = 1,7))P(o0)

The two preceding equations constitute a system of equa-
tions in two unknowns: P(0') and P(o). If the solution is
unique then P(O) is recoverable and is given by,

P(of) = P(t') — P({'|O* =1,R, = 0)
P('|0* = 0,r.) — P(t'|O0* = 1,17)
P(t') — P('|O0* =1, R, = 0)
- P(#|0* =0,r.) — P(t'|O* = 1,7)

P(T,O) can now be recovered as: P(T|O)P(O).

However, if the system of equations has infinitely many
solutions then P(O) is non-recoverable. This can happen
when T 1L O. In this case T provides no information about
O and hence, cannot be leveraged to recover P(O). This
is to be expected since we do not insist on faithfulness and
hence it is possible that an independence relation exist be-
tween two variable even when they are connected by an
edge.

We further note that it is impossible for the system to
have no solutions since it contradicts our assumption that
the graph and data are compatible (i.e. there exist param-
eterization(s) of the graph that generated the data as per
compatibility assumption).

Finally we note that as a result of recovering P(O,T),
we can also recover another hard problem: P(O|do(t)), the
causal effect of treatment on outcome. Since G is Markovian,
P(Oldo(t)) = P(O|t). Recoverability of P(O|do(t)) thus
implicitly follows from that of P(O,T).

Po)=1

Necessary and Sufficient Conditions for
Recoverability in Hard Missing Data Problems
Notations (Mgzw, Mz & Aug(Mzw, Mw))
Mz w = P(Z|W) denotes a | Z| x || matrix in which the
columns sum to one. For example if Z and W are binary,

(a)
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Figure 3: (a) P(X,Y) is not recoverable, (b)P(X,Y) may
be recoverable using graph and data, (¢) P(X,Y) is recov-
erable.

then My (P(z/|w/) P(z/|w)>‘ My = P(2)

P(z[w')  P(z|w)
denotes a |Z| x 1 column matrix. Aug(Mzyw, Mw)
denotes a |Z| x (|W] + 1) augmented matrix obtained by
appending the columns of matrices Mz and My .

The following theorem states the necessary and sufficient
conditions for recoverability in hard missing data problems.

Theorem 1. Let m-graph G and query P(W) be such that
the pair (P(W), G) constitutes a hard missing data prob-
lem. Let P(V*, Vo, R) denote the distribution over missing
data and Z C {V,,, Vo, R} — {W, R, }.

Given G and P(V*,Vp,R), P(W) is recoverable if
and only if P(Z\W) and P(Z) are recoverable and
rank(M zw ) = rank(Aug(Mz\w, Mw)) = |W|.

Proof: See Appendix.

The theorem makes no assumptions about the structure of
m-graph G. It is applicable to all hard MNAR problems and
not just to self-masking models. For example P(X,Y") and
the m-graph in figure 3 (a) and P(X,Y") and the m-graph
in figure 3 (b) constitute hard MNAR problems [Mohan and
Pearl, 2014a]. However in the case of the latter, theorem 1
can be used to recover P(X,Y) by leveraging Z.

Sufficient Conditions for Recoverability in Any
Missing Data Problem

The following corollary states sufficient conditions for re-
covering any given query P (W) using both graph and data.

Corollary 1. Given m-graph G and missing data distribu-
tion P(V*,V,, R), P(W) is recoverable if for any Z C
{Vin, Vo, R} = {W, Ry}, P(Z|W) and P(Z) are recover-
able and rank(M z)y ) = rank(Aug(Mzyw , Mw)) = |[W|.

P(X) and the m-graph in figure 3(c) do not constitute
a hard missing data problem. In fact, the query is recover-
able: P(X) = >, P(X*|Y,R, = 0)P(Y’) [Mohan et al.,
2013]. However, P(X) can still be recovered using the pre-
ceding corollary by leveraging Z. X and Z being binary
and Y having a high cardinality, say |Y| = 50 is an in-
stance where applying the corollary is more convenient from
a computational standpoint.



Remark 1. Although theorem I and corollary 1 aim to re-
cover P(W), they can also be used to recover P(Z, W)
since P(Z|W) is already known to be recoverable.

Scope of Results: Given a query graph pair (Q, G), if @
is not recoverable using GG then theorem 1 presents neces-
sary and sufficient conditions for its recoverability. If @ is
not recoverable using theorem 1 then we deem it as non-
recoverable. Corollary 1 shows that the recoverability tech-
nique in theorem 1 is applicable to simple missing data
problems such as MAR that are known to be recoverable
using graphs. However, there exists problems that cannot
be recovered using corollary 1 but can be recovered using
graphs. For example P(X,Y) cannot be recovered from
G : X Y — Rx using corollary 1 since X 1l Y. How-
ever P(X,Y) is still recoverable as, P(X*|Rx = 0)P(Y)
[Mohan et al., 2013].

The preceding recoverability procedures are inspired by
similar results in epidemiology (Rothman et al. [2008]), re-
gression analysis (Carroll et al. [2006]) and causal inference
(Pearl [2012]; Kuroki and Pearl [2014]). In contrast to Pearl
[2012] that relied on external studies to compute causal ef-
fect in the presence of an unmeasured confounder, Kuroki
and Pearl [2014] showed how the same could be effected
without external studies. In missing data settings we have
access to partial information that allows us to compute con-
ditional distributions. This allows us to adapt the procedure
in Pearl [2012] to compute consistent estimates as detailed
above. We further note that to the best of our knowledge pre-
vious work on self-masking models relied on parametric as-
sumptions (Mohan et al. [2018]; ?]; ?). In sharp contrast we
present a complete and non-parametric solution to handle all
hard problems.

Conclusions

In this work we eliminated a major deficiency in the field
of missing data. We developed a sound, complete and non-
parametric technique to handle hard missing data problems.
Furthermore we showed that this technique is also applicable
to queries that are known to be recoverable using graphs.

Appendix
Proof of theorem 1.

Proof of theorem 1 relies on the following lemma that states
the conditions under which a system of linear equations is
consistent. [Cramer, 1750; Strang, 1993].

Lemma 1. The system of equations Ax = b with m equa-
tions and n unknowns has (i) a unique solution if and only
if rank(A) = rank(Aug(A,b)) = n and (ii) infinite so-
lutions if and only if rank(A) = rank(Aug(A,b)) < n.

(Proof of sufficiency) When the conditions in the theorem
are met the constraint P(Z) = ) ,, P(Z|W)P(W) yields
a unique solution as per lemma 1, thus establishing the re-
coverability of P(WV).

(Proof of necessity) We need to show that for every ele-
ment Z; in the power set of {V,,,, Vo, R} —{W, R, }, P(W)

is non-recoverable using GG and data if any of the follow-
ing hold: (i) P(Z;) is non-recoverable, (ii) P(Z;|WW) is non-
recoverable, (iii) rank(My, ) = rank(Aug(Mz, |w, Mw ))
= |W| does not hold. Non-recoverability of P(Z;) implies
that its value is not unique i.e there exists at least two dis-
tinct distributions P;(Z;) and P5(Z;). For each of them we
can construct distinct distributions of P(W) using P(Z;) =
> ow P(Z;|W)P(W) , thereby proving that P(W) is non-
recoverable. Similarly, we can show that P(T¥) is non-
recoverable when P(Z;|WV) is non-recoverable. In the case
of condition (iii) non-recoverability of P(W) follows from
lemma 1.
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