Pooling vs Voting: An Empirical Study of Learning Causal Structures

Meghamala Sinha
Oregon State University
Corvallis, Oregon, 97330

sinham@oregonstate.edu

Abstract

In this paper we present a novel way of combining informa-
tion from multiple interventional experiments with observa-
tions to learn more accurate causal networks. While learning
causal network by pooling data from different experiments
is common, this paves the way for false causal discoveries,
if the effects of interventions are uncertain. Our approach,
called ‘Learn and Vote’ learns causal links using data from
each experiment and combines them by weighted averaging.
We show through studies on synthetic and natural datasets
that our method outperforms many state of the art approaches
and is more robust with respect to modelling assumptions
about the nature of the interventions.

Introduction

The importance of causal modeling in science, engineer-
ing and humanities is remarkable due to its utility in action
planning, prediction and diagnosis (Pearl 2003; Spirtes, Gly-
mour, and Scheines 2000). A primary goal in causal model-
ing is to discover “causal” interactions of the form A — B,
where the arrow indicates that the state of A influences the
state of B. Causal models can be fit to passive observational
measurements ( “seeing”’) as well as measurements after per-
forming external interventions ( “doing”).

The inability of observational studies to discriminate be-
tween Markov-equivalent structures motivates studies that
combine observational data with interventional data (Hag-
mayer et al. 2007). Despite this advantage, learning causal
networks from a mix of observational and experimental
studies is a significant challenge. Data collected after dif-
ferent experiments might not be identically distributed as be-
fore making the results incoherent with one true causal struc-
ture. Such discrepancies could be due to unknown conse-
quences of interventions. Different experiments might have
different joint distributions due to uncertain effects of each
intervention or condition (Eaton and Murphy 2007). For in-
stance, in the case of a drug intervention on cells, a drug
may have unintended direct effects on molecules other than
the drug’s intended target, i.e., “off-target” effects.

Pooling data across experiments can lead to mislead-
ing changes in correlation. Eberhardt (2008) described two
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problems: a) Independence to Dependence: X and Y, two
independent variables in a structure before and after an in-
tervention, become dependent when the samples are pooled
and b) Dependence to Independence: X and Y, dependent
in an observational study, become independent when pooled
with an interventional study. This problem occurs even when
interventions are perfect. This generates a problem of false
causal discovery which we address in our work.

Due to the above issues, it is important to consider how to
handle uncertain interventions while learning causal struc-
tures. Given two or more datasets generated from different
interventions, it is unclear how to combine the data for opti-
mal efficiency of learning. Most of the popular causal learn-
ing algorithms assumes perfect interventions, which raises
concerns about their applicability to real-world datasets that
violate this assumption. While these algorithms might be
able to learn most of the true arcs, significant false detection
might lose the very purpose of learning such networks. For
example, in medical science, a false positive result giving
an erroneous indication that a particular disease is present
(when it isn’t) can result in unnecessary medical tests and
panic. In such cases, learning a reliable causal network is
more important than learning an accurate but low confident
one. The key contributions of this paper are as follows:

1. We describe a way of handling uncertain interventions
by learning causal information from different experiments
separately and combining the resulting structures using a
simple approach called ‘Learn and Vote’.

2. We compare our results with a baseline method on Flow

cytometry data. We found that our approach gives a sig-
nificant reduction of false causal discovery.

3. We performed a comparative study of prominent casual

network discovery methods with uncertain interventions
over various benchmark networks.

Motivation
Related Work

Popular Constraint-based causal learning methods like PC
(Spirtes, Glymour, and Scheines 2000), FCI (Spirtes, Meek,
and Richardson 1995), etc. uses the entire dataset to learn
causal networks using conditional independence tests. Sim-
ilarly, Score based methods like GES, GIES (Hauser and



Biihlmann 2012) compute a score for the entire dataset to
evaluate the best fitting candidate network. Both type of al-
gorithms were originally designed to infer causal network
using single observational dataset. They do not take into ac-
count the partitioning of the data based on the different ex-
periments. In this section, we describe some extended works
which address the different contexts behind the experiments.

e Data Pooling Methods: These methods learns a single
causal graph by pooling data from different experiments.
(Cooper and Yoo 1999) first provided a score-based
causal learning algorithm by combining data from across
various experiments, each having perfect and known tar-
gets of intervention. This idea was later re-defined by
(Eaton and Murphy 2007) to handle soft interventions or
mechanism changes (Tian and Pearl 2001). The causal in-
variance property across environment changes was used
by (Claassen and Heskes 2010a). Some practical ap-
plications of these methods in biology were studied in
flow cytometry data set (Sachs et al. 2005) (Cooper and
Yoo 1999) and yeast transcriptional regulatory network
(Chen, Emmert-Streib, and Storey 2007). A recent ap-
proach called Joint causal inference (JCI) (Mooij, Maglia-
cane, and Claassen 2016) takes into account the data gen-
erated from different conditions and introduces additional
context variables before pooling.

e Network Combination Methods: These methods learn
information separately from each experiment and com-
bine them to learn a single graph. The ION-algorithm
(Danks, Glymour, and Tillman 2009) integrates locally
learned causal networks having overlapping variables.
(Triantafillou and Tsamardinos 2015) proposed a con-
straint based algorithm, COmbINE, which estimates de-
pendencies and in-dependencies across separate experi-
ments. However, both these methods assume a single un-
derlying causal structure that accounts for all observed
causal dependencies. It is difficult to achieve this in real-
ity when the experimental conditions changes across ex-
periments. The MCI (Claassen and Heskes 2010b) algo-
rithm is a constraint based method that exploits the ‘local’
aspect of causal Y-structures (Mani, Spirtes, and Cooper
2012) which is sufficient to explain the independencies
between two variables regardless different distribution.

In this work, we use the latter approach and describe ‘Learn
and Vote’, a score based Bayesian method to learn causal
network by learning causal arc-strengths from each experi-
ments and combining the results.

False Causal Discoveries for Pooling

Our work is motivated by the fact that perturbations effect-
ing two or more variables in a causal model M, can lead
to spurious dependencies or independencies. We show two
such cases in Figure 1. Each causal model M, contains a
pair (V, E), where V is a set of vertices and E is a set of edges
between pairs of nodes with P(V) representing the joint dis-
tribution. The causal arcs V; — Vj and V; — V; are repre-
sented by black arrows, as shown in Figure 1a. We represent
the external perturbation caused by experiments as an exter-
nal model M, containing a set of unobserved policy variable
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(a) False dependence (b) False independence

Figure 1: Problem with Pooling: Dashed arrows are inter-
ventional effects. Solid black are True Positives (TP). Red
are False Positives (FP). Blue are False Negatives (FN).

Iy, I ... I, € I. Experiments can be both observational as well
as controlled. The combined model is M7 = M, + M, which
includes all the external effects in the causal system.

Definition 1. False causal dependence: Two or more vari-
ables, say V;, V;, which are not causally related, are effected
by a common intervention (/; in Figure 1a) becomes V; L V;
due to confounding effect. This gives rise to a new model
My, = M. + M, with a changed distribution P\(V ¢ My,).
Pooling data from such different distributions may lead to
spurious correlations between independent variables.

Definition 2. False causal independence: Intervening on a
child node with causal parents removes all incident arrows
and cuts off the causal influence. Pooling data from such
models nullifies the true causal dependence of parents. This
generates a new model Mr, = M. + M, with changed dis-
tribution P,(V ¢ My,). Pooling various such experiments on
Vi, shown in Figure 1b will dominate over other experiments
having the causal relations V; — V; and V; — V.

These above mentioned cases could be shortcomings
when pooling data to learn causal networks.

Our Approach: Learn and Vote

To avoid the problems arising from pooling data from differ-
ent distributions, we propose an approach we call “Learn and
Vote” (Algorithm 1) to learn causal networks. The approach
is to learn a separate weighted causal network from the data
generated in each experiment or observational study by ig-
noring the directed arcs into the intervened variables and
then combine the results by weighted averaging. For each
dataset, we have the observed variables (N) and the known
targets (stored as list intv) if any intervention is performed.
The details of our approach are as follows.

Scoring Function

The interventional effect is incorporated in the score com-
ponent of each node by modifying the Bayesian Dirichlet
equivalent uniform score (BDeu) (Heckerman, Geiger, and
Chickering 1995; Cooper and Yoo 1999; Pe’er et al. 2001).
Given a dataset D; from the j* experiment G/ represents
a DAG over a set of variables N learned from it (with con-
ditional distributions P(N,-IPaiG), where Pa; is parent of N;).
In case of an interventional experiment, we assume perfect
intervention by fixing the values of N;[m] in Int(m), which is



the set of intervened entities in the m” sample. Hence, we
should no longer consider P(N;[m] | Pa;[m]) in the scoring
function. But since the interventions are “perfect”, (Pearl
2003) all the other variables are unaffected and therefore we
sample them from their original distributions. Here, the dis-
tribution D; is per experiment and not a mixture of pooled
data from different experiments like in Sachs et al.’s method.
We define the score of S(G/ : D ;) as a composition of the
contributions of each local score (S ;,¢.;) of variables N;. The
modified local score is as follows:

Slocal(Nis U: Dj) = IOgP(Pal- = U)+

log f 1_[ P(Ni[m]|U[m], 0)dP(6),

m,N;¢Int(m)

Structure Learning

Due to limitations in data, the results of structure learning
in most real-world setting are noisy. To overcome this we
create n = 100 random DAGs using createRandNet over
the set of given nodes to learn an averaged network from
each experiment. We learn the structure from each DAGs in
randomNet using the 7abu search algorithm (Glover 1986)
which searches over the space of different structures and
store them in a list Net. The list intv of known targets is
passed as an argument which incorporates interventions in
the search algorithm by preventing the arcs to be incident on
the targets. Next, we measure the probabilistic arc strength
and direction (using arcStrength) for each arc as its empir-
ical frequency given the list of networks in Net. We average
the arc strengths for every directed arc over the networks
in which corresponding target node was not intervened and
store them as arcProb.

AvcoritaMm 1 Learn and Vote
Input: set of k experiments with dataset D,D;...Dy,
Output: DAG G/ = (E, V), final causal network

1: procedure OUR APPROACH

2 for j=1tok do

3 N=nodes In D;

4 intv=Intervened nodes in D;

5: randomNet=createRandNet (N, 100)
6: for 1=1 to 100 do
7.
8
9
0

Net[1]=Tabu(randomNet[1l], intv)
arcProb[j]=arcStrength(Net)

avgArcs = avgNetwork(arcProb)
G/ = learnDAG(avgArcs,Threshold)

Combining results from the experiments

Given arc strengths from each experiment, we average their
strengths and directions over the number of experiments the
given arc is valid (using avgNetwork). Finally, we store the
averaged arc strengths as avgArcs to build the final DAG
(using learnDAG) containing only the significant arcs over
a certain Threshold. We found our method performing best
at a threshold of 0.5. We implemented our methods in the
bnLearn R package (Scutari 2009).

Application on Biological Signalling Networks

Cell signaling networks are a type of causal network in
which proteins or other molecular species modify or in-
fluence the state of their “child” proteins or molecules.
Such networks are amenable to both observational and in-
terventional experiments. Sachs et al. (2005) inferred the
signaling pathway and novel causal interactions in human
CD4+ T-cells, using a Bayesian network approach (Fig-
ure 2a). They carried out nine experiments, two observa-
tional and seven interventional, to measure the expression
levels of eleven phosphorylated proteins and phospholipids
using multiparameter flow cytometry. They found 17 true
positives (TP=17, with 15 from well-established literature
and 2 with at least one citation) out of 20 expected arcs and
missed 3 false negatives (FN=3). They did not have any false
positives (FP=0). They also showed how including interven-
tions into observations improves accuracy. We re-analyzed
Sachs et al. approach twice, first using observational sam-
ples only (Figure 2b) and then using an equal number of
samples comprising 50% observational and 50% interven-
tional data. (Figure 2c) illustrates this point by being much
closer to the ground truth.

However, like most causal discovery approaches, the
methods (used in the Sachs et al.’s study and in our re-
analysis) assume perfect intervention. Such a perfect inter-
vention modelling is often not consistent in biological ex-
periments like gene knockouts. In the Sachs et al.’s study,
we know the nominal target of each of the reagents, but they
might affect other variables. In such cases, using causal in-
ference methods assuming perfect intervention with known
targets can detect spurious interactions.

Comparative Studies

We evaluated our algorithm on various synthetic and real
world data ranging from small to medium size. For the syn-
thetic networks we sample equal amount of data from obser-
vational and interventional experiments from each network.
We simply draw the observation data as random samples
from each synthetic network. In the interventional experi-
ments, to model uncertainty, we set the known target node
of each perfect intervention to a certain value. Next we also
set one or more of its children to different values (like “fat-
hands”) which are assumed to be unknown and finally sam-
ple data from each of these mutilated networks. Description
of the datasets we used for this study are as follows:

e Flow Cytometry: This is a technique for obtaining multi-
parameter molecular measurements from individual cells.
The original data, provided by (Sachs et al. 2005) is col-
lected from a series of 9 experiments. We use the raw
data and replicate their data-processing procedure in R for
our evaluation. Although, the interventions are assumed to
be ideal, their effects are known to have unknown conse-
quences as shown in (Eaton and Murphy 2007).

e Lizards: This is a real-world dataset having 3 variables
representing the perching behaviour of two species of
lizards in the South Bimini island (Schoener 1968). We
generated one observation and two interventional studies.
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Figure 2: (a) Network inferred by (Sachs et al. 2005) (b) Network inferred from two observational experiments (c) Network
inferred from pooling data from an observational and an interventional experiment d) Network inferred from “Learn and Vote”
using the same experiments as (c). The structure learning statistics used are True Positive (TP), False Positive (FP) and False

Negative (FN).

o Asia: This is a synthetic network of 8 variables (Lauritzen
and Spiegelhalter 1988) about occurrence of lung diseases
and their relation with visits to Asia. For our experiment,
we created two mutilated networks. Asia_mutl have one
observation and one interventional study. Asia_mut2 have
one observation and two interventional studies.

e Alarm: This is a synthetic network of 37 variables repre-
senting an alarm messaging system for patient monitoring
(Beinlich et al. 1989). For our experiment, we created two
mutilated networks. Alarm_mutl have three observational
and six interventional studies. Alarm_mut2 have five ob-
servational and ten interventional studies.

e Insurance: This is a synthetic network of 27 variables
for evaluating car insurance risks (Binder et al. 1997).
We created two mutilated networks. Insurance_mutl have
one observation and five interventional studies. Insur-
ance_mut2 have three observations and eight interven-
tional studies.

e gmlnt: This is a synthetic dataset containing a matrix
of observational and interventional data from 8 Gaussian
variables, provided in the pcalg-R package.

Popular Causal Structure Learning Methods

We evaluate the following algorithms (implemented in R) for
our comparative analysis. The learned causal graphs on the
flow cytometry datasets are shown in Figure 3a-3e.

e PC: The observational experiments were used to evalu-
ate the equivalence class of a DAG using the PC algo-
rithm (Spirtes, Glymour, and Scheines 2000). Fisher’s z-
transformation conditional independence test was used by
varying @ from 0 to 1 in steps of 0.01.

e GDS: This is a greedy search method (Hauser and
Biihlmann 2012) to estimate Markov equivalence class of
DAG from observational and interventional data. It works
by maximizing a scoring function (ly-penalized Gaussian
maximum likelihood estimator) in 3 phases, i.e., addition,
removal and reversal of an arrow, till the score improves.

e GIES: This algorithm (Hauser and Biihlmann 2012) ex-
tends the greedy equivalence search (GES) algorithm
(Chickering 2002) to a generalized version that includes
interventional data into observational data.

e Globally optimal Bayesian Network: This is a score-
based dynamic programming approach (Silander and
Myllymaki 2012) to find the optimum of any decompos-
able scoring criterion (like BDe, BIC, AIC). This func-
tion (simy) estimates the best Bayesian network structure
given interventional and observational data but is only
feasible up to about 20 variables.

e Invariant Causal Prediction: This method by Pe-
ters et al.,, (2016) calculates the confidence intervals
for causal effects by exploiting the invariance prop-
erty of a causal (vs. non-causal) relationship under dif-
ferent experimental settings. We implemented it using
InvariantCausalPrediction R package.

Analysis of Results

Table 1 summarizes the results of the different structure
learning algorithms over all the datasets.

Evaluation Metrics

We treat the presence of an arc in the ground-truth dataset
as a “positive” example and its absence as a “negative” ex-
ample. For each inferred network we compute the confu-
sion matrix counts in the usual manner. For each of the nine
datasets and each of the seven inference algorithms, we re-
port the precision, the recall, and the F1 score.

Our approach outperformed all the baselines in five out of
nine studies in terms of precision, with the ICP method hav-
ing second best performance. The positive predictive rate of
our approach is higher for small or medium sized networks
(less than 20 nodes) but comes down as the size of the net-
work increases. In terms of recall, although the performance
of the greedy algorithms (GDS, GIES, simy) is better for
smaller networks, it decreases as the network size increases.
In terms of F1, our approach outperformed the others in five
out of nine studies and is more stable even when the net-
work size increases. The PC algorithm learns better in case
of small networks (less than ten nodes), even with only ob-
servational data.

Network inference results on Sachs et al.’s dataset

Here, we compare the graphs learned using our approach
in Figure 3g with that of the Sachs et al. network infer-
ence method in Figure 3f on their cell signaling dataset.



Table 1: Comparative Results

Causal Discovery Algorithms

Dataset Metric PC GDS GIES ICP simy Sachsetal Learn and Vote
Precision 0.5714 0.4186 0.377 1 0.4222 0.68 0.89
Flow Cytometry Recall 0.4 0.9 0.85 0.45 0.95 0.85 0.89
F1 score 0.47 0.572 0.522 0.62 0.584 0.7558 0.89
Precision 1 1 1 0 1 1 1
Lizards Recall 1 1 1 0 1 0.5 0.5
F1 score 1 1 1 0 1 0.667 0.667
Precision 1 0.625 0.625 1 0.31578 0.77 1
Asiamutl Recall 0.75 0.625 0.625 0.5 0.75 0.875 0.75
F1 score  0.857 0.625 0.625 0.666  0.4444 0.8237 0.857
Precision 1 0.85714 0.85714 1 0.3043 0.666 1
Asiamut2 Recall 0.75 0.75 0.75 0.5 0.875 0.75 0.75
F1 score  0.857 0.8 0.8 0.666  0.4928 0.7058 0.857
Precision 0.75 0.889 0.889 1 0.889 0.8571 1
It Recall 0.75 1 1 0.375 1 0.75 0.75
8 F1 score 0.75 0.94 0.94 0.5454 0.94 0.8 0.857
Precision  0.666 0.25 0.26 0.7 n/a 0.625 0.564
Alarmmut] Recall 0.434 0.217 0.26 0.26 n/a 0.4464 04
F1 score  0.526 0.2325 0.26 0.38 n/a 0.52 0.468
Precision  0.666 0411 0.5128 0.6 n/a 0.725 0.769
Alarmsmut2 Recall 0.434 0.456 0.434 0.21 n/a 0.63 0.642
F1l score  0.526 0.432 0.47 0.3115 n/a 0.675 0.7
Precision 0.7143 0.36 0.3617 0.7 n/a 0.857 0.8
Insurance mutl Recall 0.288 0.3461 0.327 0.25 n/a 0.577 0.538
F1 score 0.4107 0.352 0.3435 0.368 n/a 0.689 0.643
Precision 0.7143 0.355 0.366 0.64 n/a 0.676 0.6857
Insurance mut2. Recall 0.288 0.423 0.423 0.21 n/a 0.4423 0.4615
F1 score 0.4107 0.386 0.392 0.316 n/a 0.535 0.5517

(a) TP:8, FP:6, FN:12 (b) TP:18, FP:25, (c) TP:17, FP:28, (d) TP:9, FP:0, FN:11
FN:2 FN:3

(e) TP:19, FP:26, FN:1 (f) TP:17, FP:8, FN:3 () TP:18, FP:2, FN:2

Figure 3: Network Inferred from various algorithms: (a) PC, (b) GDS, (c) GIES, (d) ICP, (e) simy, (f) Re-implemented Sachs
et al. 2005 and (g) 'Learn and Vote’
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Figure 5: Sample size vs F1 score plot for comparing results over various datasets

The Sachs et al.’s method resulted in 8 false positive arcs,
3 false negative arcs, and 17 true positive arcs (Figure 3f).
Our method detected all 17 arcs that were correctly detected
by the Sachs et al. method plus another arc (PIP2 — PKC)
that the Sachs et al. method missed. We detected two false
positives. On further study, we found that both of the de-
tected putative false positives by our method, (P38 — pjnk)
and (PKC — p44.42), are likely real interactions according to
PCViz! and PubMed?.

Figure 3 shows the networks inferred by the seven infer-
ence algorithms on the Sachs et al.’s dataset. The greedy al-
gorithms (Figure 3b, fig. 3c, fig. 3e) are able to find most of
the true positive arcs at the cost of a large number of false
positives. Hence such methods are not reliable in interven-
tional studies having uncertain targets. ICP on other hand
is restrictive due to its strict invariance property and helps
reduce false causal arcs to a great extent, but at the cost of
sensitivity (Figure 3d). We also contrast the performance of
the PC algorithm by working only on the observational data.
we can see from Figure 3a that most of the directions are un-
determined and the overall performance improves by adding
interventional data.

To show the effect on a smaller scale, we can refer back
to Figure 2¢ and 2d. Here we used one general perturbation
(Anti-CD3/CD28) and one specific perturbation experiment
(AKT inhibitor). We can see how the number of false posi-
tives reduces by avoiding pooling data.

Sensitivity to Threshold

To analyze the sensitivity of our results to the threshold pa-
rameter (which was set to 0.5 in our experiments so far),
we further compared ‘Learn and Vote’ to the method of

'PCViz: http://www.pathwaycommons.org/pcviz/
2PubMed : https://www.ncbi.nlm.nih.gov/pubmed/

Sachs et al. using the threshold-independent performance
visualization, the receiver operating characteristic (ROC)
curve (Figure 4a). We can see that the area under ROC in
our approach is more than theirs for the experiment on the
flow cytometry data. The comparison on the two studies on
Asia dataset (asia_mutl & asia_mut2) shows that includ-
ing more experiments by informative targets improves the
performance. However, choosing which intervention is in-
formative in an unknown network structure is a challenging
task, which will be a future extension of this work.

Effect of Sample size

Figure 5 shows the performance of our method vs Sachs
et al.’s method by varying the sample sizes extracted from
each experiments. We observe that in case of very small
samples per experiment, the learning from pooled data gives
a better result. For the Asia network having 8 nodes, learn-
ing from 20 data points from each experiments gives a non-
significant result (Figure 5c). Hence, in case of less number
of available data it is a good idea to combine them irrespec-
tive of experimental conditions. However, for large enough
sample data pooling will raise the issue of false discovery.
In this work, we randomly sampled ‘equal’ number of data
points from each experiments to prevent biasing towards a
particular experiment. Future work will deal with the case
of uneven samples of data from different experiments.

Conclusions

In this paper, we addressed the issue of false causal dis-
covery which is observed when we pool data from two or
more experiments having different joint distributions caused
by uncertain interventions. We provided a benchmark for
causal network learning methods with observational and in-
terventional experiments having uncertain interventions. We



showed by evaluating several state of the art causal learning
algorithms that combining data from multiple experiments
could result in a large number of false positive causal arcs.
We presented our new approach, ‘Learn and Vote’, which
avoids pooling data from multiple experiments and instead
combines the weighted graphs learned separately from each
experiment. Our approach significantly reduces the number
of false positive arcs and achieves superior F1 scores. Our
research motivates the need to focus on the uncertain and un-
known effects of interventions to learn high precision causal
networks from experimental data.
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