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Plan 

 Present an example of how causal 
modeling can help reinforcement 
learning 

 
 Speculate the role of causal modeling 

in machine learning 
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Causal Modeling to Remove 
Exogenous Variables in 
Reinforcement Learning 
 Consider training your car to drive you to 

work every day 
 MDP 
 states: car location + traffic 
 actions: turns to make 
 cost: total time to reach the office 

 Problem:  
 Your actions only control part of the cost. Most 

of the cost is determined by what other 
drivers are doing 
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Consequences 
 The cost of any policy 𝜋𝜋 will have high 

variance 
 This makes it hard to compare two 

policies (or to search for good policies) 
 Smaller learning rates 
 Larger sample sizes 
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Causal Argument 

 We want to isolate the component of 
the reward that is caused by our 
actions: 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 (“endogenous”) 

 Then create an RL algorithm to find a 
policy 𝜋𝜋 that optimizes 𝔼𝔼 ∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡  

SSS 2019 5 



Standard MDP Causal Diagram 
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𝑠𝑠𝑡𝑡 𝑠𝑠𝑡𝑡+1 

𝑎𝑎𝑡𝑡 

𝑟𝑟𝑡𝑡 



Exogenous State MDP Causal 
Diagram 
 MDP state is 

partitioned into 
𝑠𝑠 = (𝑥𝑥, 𝑒𝑒), where 𝑥𝑥 
is exogenous and 𝑒𝑒 
is endogeneous 
 

 Transitions: 
 𝑃𝑃 𝑥𝑥𝑡𝑡+1, 𝑒𝑒𝑡𝑡+1 𝑥𝑥𝑡𝑡 , 𝑒𝑒𝑡𝑡 ,𝑎𝑎𝑡𝑡 =
𝑃𝑃 𝑒𝑒𝑡𝑡+1 𝑥𝑥𝑡𝑡 , 𝑒𝑒𝑡𝑡 ,𝑎𝑎𝑡𝑡 𝑃𝑃 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡  
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𝑥𝑥𝑡𝑡 

𝑒𝑒𝑡𝑡 𝑒𝑒𝑡𝑡+1 

𝑥𝑥𝑡𝑡+1 

𝑎𝑎𝑡𝑡 

𝑟𝑟𝑡𝑡 

Actions only affect 𝑒𝑒𝑡𝑡+1 
(and 𝑟𝑟𝑡𝑡) 
𝑥𝑥 evolves independently 
but is still Markov 



Approach 
 Assumption: Reward Decomposes 

Additively 
 

𝑅𝑅 𝑒𝑒, 𝑥𝑥,𝑎𝑎 = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 + 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒, 𝑥𝑥,𝑎𝑎)  
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𝑥𝑥𝑡𝑡 

𝑒𝑒𝑡𝑡 𝑒𝑒𝑡𝑡+1 

𝑥𝑥𝑡𝑡+1 

𝑎𝑎𝑡𝑡 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 

𝑟𝑟𝑡𝑡 



Approach 
 Assumption: Reward Decomposes 

Additively 
 

𝑅𝑅 𝑒𝑒, 𝑥𝑥,𝑎𝑎 = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 + 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒, 𝑥𝑥,𝑎𝑎)  
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𝑥𝑥𝑡𝑡 

𝑒𝑒𝑡𝑡 𝑒𝑒𝑡𝑡+1 

𝑥𝑥𝑡𝑡+1 

𝑑𝑑𝑑𝑑(𝑎𝑎𝑡𝑡) 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 

𝑟𝑟𝑡𝑡 



Approach 

 Decompose 𝑠𝑠 into 𝑒𝑒, 𝑥𝑥  by enforcing 
mutual information constraints 
 𝑒𝑒, 𝑥𝑥 = 𝐹𝐹(𝑠𝑠) 
 Solve a regression problem to predict 𝑟𝑟𝑡𝑡 =
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑡𝑡  

 How much of the reward can be explained by 
the exogenous state alone? 

 Subtract 𝑟𝑟𝑡𝑡 − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑡𝑡 = 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 to obtain the 
endogenous reward (plus any noise in 
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒)  

 Find an MDP policy 𝜋𝜋 that optimizes just 
𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 
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Estimating the Endo-Exo Decomposition 
 Suppose we have a database of 

transitions 𝑠𝑠𝑖𝑖 ,𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖′ 𝑖𝑖=1
𝑒𝑒  gathered by 

executing one or more exploration 
policies on the MDP 

 Linear case ⇒ additive decomposition: 
𝑥𝑥 = 𝑊𝑊⊤𝑠𝑠;  𝑒𝑒 = 𝑠𝑠 −𝑊𝑊𝑊𝑊⊤𝑠𝑠 

 Find 𝑊𝑊 to satisfy 𝐼𝐼 𝑥𝑥𝑡𝑡+1; 𝑒𝑒𝑡𝑡,𝑎𝑎𝑡𝑡 𝑥𝑥𝑡𝑡 = 0 
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𝑥𝑥𝑡𝑡 

𝑒𝑒𝑡𝑡 𝑒𝑒𝑡𝑡+1 

𝑥𝑥𝑡𝑡+1 

𝑑𝑑𝑑𝑑 𝑎𝑎𝑡𝑡  



Two Algorithms 
 Approximate 𝐼𝐼 𝑥𝑥𝑡𝑡+1; 𝑒𝑒𝑡𝑡,𝑎𝑎𝑡𝑡 𝑥𝑥𝑡𝑡  by the 

Partial Correlation Coefficient 
 Global Algorithm 
 For each 1 ≤ 𝑑𝑑𝑒𝑒 ≤ 𝑑𝑑, compute a 𝑑𝑑-dimensional 
𝑊𝑊 

 Solves 𝑑𝑑 Steiffel Manifold optimizations of 
increasing size 

 Stepwise Algorithm 
 Similar to PCA 
 Compute one column of 𝑊𝑊 in each iteration 
 Solves 𝑑𝑑 1-dimensional Steiffel Manifold 

optimizations 
 Matlab Manopt 
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Toy Problem 1: 30 Dimensions 
 15 dimensions are exogenous 
 15 dimensions are endogenous 
 𝑋𝑋𝑡𝑡+1 = 𝑀𝑀𝑒𝑒𝑋𝑋𝑡𝑡 + ℇ𝑒𝑒 

 𝐸𝐸𝑡𝑡+1 = 𝑀𝑀𝑒𝑒

𝐸𝐸𝑡𝑡
𝑋𝑋𝑡𝑡
𝐴𝐴𝑡𝑡

+ ℇ𝑒𝑒 

 ℇ𝑒𝑒 ~ 𝒩𝒩 0,0.09 ; ℇ𝑒𝑒  ~ 𝒩𝒩 0,0.04  
 𝑆𝑆𝑡𝑡 = 𝑀𝑀 𝐸𝐸𝑡𝑡

𝑋𝑋𝑡𝑡
  

 𝑅𝑅𝑒𝑒 = −3 𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋); 𝑅𝑅𝑒𝑒 = exp[−|𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑡𝑡 − 1|] 
 𝑀𝑀,𝑀𝑀𝑒𝑒,𝑀𝑀𝑒𝑒 are random matrices with elements ~𝒩𝒩 0,1 . 

Rows normalized to sum to 0.99. 
 

 𝛽𝛽 = 1, learning rate = 0.05. 2 hidden layers w/ 40 tanh 
units 
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Results 
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Cell Network Optimization 
 Adjust cell tower parameters to minimize # of 

users experiencing poor throughput 
 Action: increase/reduce threshold on signal power 

for when to switch channel for a user 
 Time step: 1 hour 
 Data: 5 days, hourly, 105 cells, Huawei Customer 
 Simulator: MFMC (Fonteneau et al 2012) 
 discount factor 0.95 
 features: # active users, avg # of users, channel 

quality index, small packets/total packets; small 
packet bytes / total packet bytes 
 

 Reward function: 𝑅𝑅𝑡𝑡 = −𝑃𝑃𝑡𝑡 = fraction of customers 
with low bandwidth during period 𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡  

 Separate fixed horizon evaluation trials 
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Results 
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Existing Fixed Policy 



Summary 

 Exogenous state variables can increase 
reward variance and impede RL 

 We can identify these variables by 
solving an optimization problem with 
conditional mutual information 
constraints 

 We can then remove the mean effect 
of the exogenous state 
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Open Questions & Next Steps 

 Identify and Remove Exogenous Noise? 
 Can we also remove the effect of aleatory 

variation in the exogenous state? 
 Irrelevant State Variables 
 We can set up a similar mutual-information 

problem to identify a subspace that is 
irrelevant to 𝑟𝑟𝑡𝑡 even though it is affected by 
our actions 

 Conditional Causation 
 Is there any benefit to identifying regions of 

the state space where our actions affect only a 
portion of 𝑒𝑒𝑡𝑡? 
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Reflections on Causal Modeling 
in Machine Learning 
 Confounding is a threat to successful 

generalization 
 It is one of the key reasons that ML 

methods do not generalize well 
 ML should fit causal models whenever 

possible 
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Causal Modeling and Machine 
Learning 
 Pearl (et al.): To make causal 

inferences, we must make causal 
assumptions 
 To learn from data, we must make some 

assumptions (adopt a model space) 
 This can easily be a space of causal models 
 So the causal assumptions can be quite 

weak 
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Is fitting causal models different 
from fitting acausal models? 
  Yes 
 The “evidence” for fitting a statistical 

model is just the data 
 The “evidence” for fitting a causal 

model includes the data-generating 
process 
 randomization, mixing 
 interventions (e.g., instrumental variables) 
 etc. 
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Is there a unified theory of 
fitting causal models? 
 To fit statistical models, MLE and MAP 

methods minimize the (penalized) KL 
divergence between the fitted model 
and the data 

 Can we cast the fitting of causal 
models into some similar “distance” 
framework? 
 At present, we have a growing collection of 

techniques. Can we unify them? 
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Methodological Benefit of Causal 
Modeling 
 Interventions and Transportability 

encourage the modeler to explicitly think 
about how the deployment environment 
will differ from the training environment 

 This is not unique to causal modeling but 
 Causal models provide a vocabulary for 

expressing many kinds of change 
 Prediction: ML will increasingly focus on 

“threats to generalization” in our search 
for robustness 
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Questions? 
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