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How to construct 
macro features?
Unsupervised?



➡ account of the construction of causal 
variables

➡ applicable to complex macro-level causes
➡ domain general
➡ supports an interpretation of causation as 

invariance under intervention

The Aim
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• the causal effect of Total Cholesterol on Heart Disease is 
ambiguous

➡ Total Cholesterol is over-aggregated, it cannot be described as a 
cause of Heart Disease

Spirtes & Scheines (2002)



Ambiguous Manipulation

Total Cholesterol

Heart Disease
HDL

LDL

+

+

• if HDL and LDL have the same causal effect on Heart Disease 
then the causal effect of Total Cholesterol on Heart Disease is 
NOT ambiguous

➡ we can aggregate HDL and LDL into Total Cholesterol, which is a 
cause of Heart Disease

Spirtes & Scheines (2002)



Ambiguous Manipulation

Total Cholesterol

Heart Disease

• if HDL and LDL have the same causal effect on Heart Disease 
then the causal effect of Total Cholesterol on Heart Disease is 
NOT ambiguous

➡ we can aggregate HDL and LDL into Total Cholesterol, which is a 
cause of Heart Disease

Spirtes & Scheines (2002)



Ambiguous Manipulation

Total Cholesterol

Heart Disease
HDL

LDL



Ambiguous Manipulation

Total Cholesterol

Heart Disease
HDL

LDL

ratio
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• arbitrary choices of variables imply correlated errors

• interventions would be interventions on the variable and the 
error term



➡ account of the construction of causal 
variables

➡ applicable to complex macro-level causes

➡ domain general

➡ supports an interpretation of causation as 
invariance under intervention

Constructing / Identifying Macro Variable

➡ merge states that have the same causal 
effect

➡ do not merge if an ambiguous 
manipulation would result
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The horizontal, but not the vertical bar, is causal of the target 
behavior, even though both are predictive of it.
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• causal partition: partitions the image space according to the equivalence 
relation induced by the probability of the target behavior T given an 
INTERVENTION on the image

•macro cause: the macro cause C of a target behavior T is a random 
variable whose value stands in a bijective relation to the causal class of the 
image

Causal Partition
space of images

1
0

behavior space

i1 ⇠I i2 , 8t2T P (t | do(i1)) = P (t | do(i2))

I

T

P (T |I)
6= P (T |do(I))

C = 1

C = 0



Observational vs. Causal Partition

P(T=0 |       ) = .66

P(T=0 |       ) = .33

P(T=0 |       ) = 1

P(T=0 |       ) = 0

observational partition of causal partition of 

P (T |I) P (T |do(I))
I I

?



For
• multinomial distributions
• no causal feedback
• [technical assumption about the 

nature of confounding]

➡ the subset of distributions that 
induce a causal partition 
that is not a coarsening 
of the observational 
partition is Lebesgue 
measure zero.

Causal Coarsening Theorem



• learn the observational partition 
from non-experimental data

• under the assumptions of the 
theorem, the relevant causal 
distinctions are a subset of the 
detected distinctions

• test which distinctions are causal 
with a few experiments

Applying the Causal Coarsening Theorem



Chalupka, Bischoff, Perona & Eberhardt (2016)

• we found the macro-level climate phenomenon of El Niño supervening 
on micro-level wind and sea surface temperature data of the equatorial 
Pacific in an entirely data driven (unsupervised) manner

Causal Feature Learning
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• account of causal macro-variables that

- turns the question about the existence of causal macro-
variables into an empirical question

- identifies a privileged level of aggregation that retains exactly 
the causal information of the underlying micro-systems

- supports a causal interpretation in terms of intervention 
(and avoids known problems of causal variable definition)

- is domain-general 

• algorithms that discover/construct such causal macro-variables

• applications as proof of concept

Causal Macro-Variables



• can we use the same approach to search for macro-level 
neural features that are causal of behavior?

Causal Feature Learning
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