Imagination Inspired Vision

Mohamed Elhoseiny KAUST

mohamed.elhoseiny@kaust.edu.sa

Collaborators

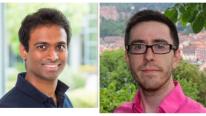
Othman

Yannis

Camille

Yann

Marcus



Ram

Dhruv

Devi

Arslan

Sayna Trevor



Tinne

Rahaf

Francesca

Bingchen

Yitzhe

Ahmed

People Imagine to Create

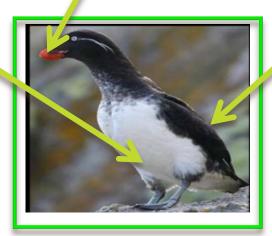
Mona Lisa(1503-1506)

Irises, Saint-Remy, Van Gogh (1889)

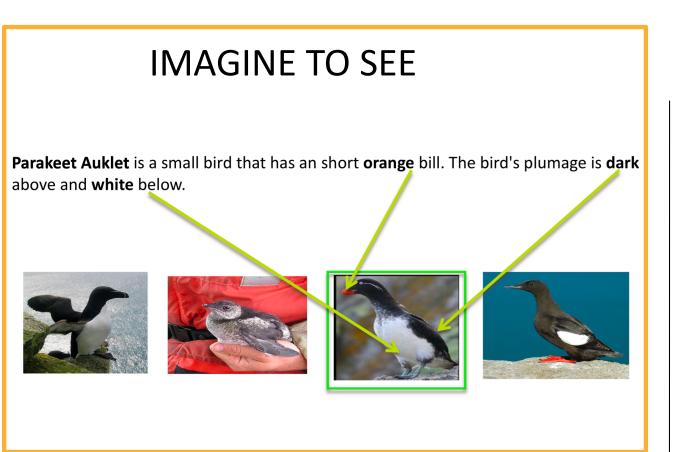
Starry Night, Van Gogh (1889)

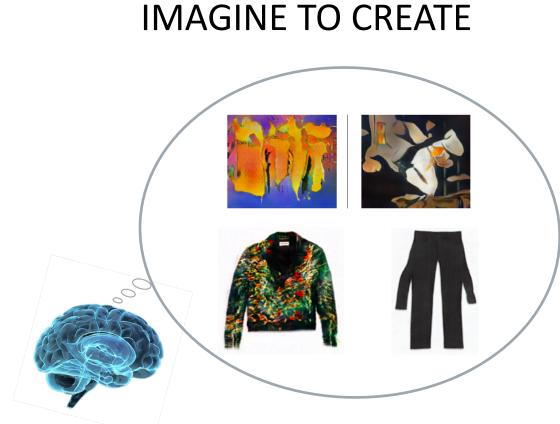
Zero-Shot Learning from Text

Parakeet Auklet is a small bird that has a short orange peak. The bird's plumage is dark above and white below.



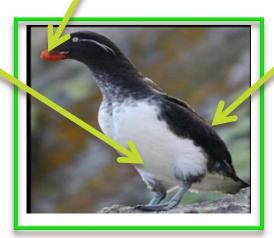
Imagination Inspired Vision





Machines Imagine to See, Why?

Parakeet Auklet is a small bird that has a short orange peak. The bird's plumage is dark above and white below.



Zero-Shot Visual Recognition

Generalize to Unseen Labels

Training (Seen) Classes:

- Black_footed_Albatross
- Crested_Auklet
- American_Crow

Test (Unseen Classes):

- Parakeet_Auklet
- ► Fish_Crow

"Side information"

"Representation of new classes"

Recognizing Unseen Categories/ Zero-Shot Learning (ZSL)

Attribute Based Methods

[Lampert al., 2009, 2014]

[Farhadi, et al., 2009]

[Parikh, et al., 2010]

[Rohbrach et al., 2011)]

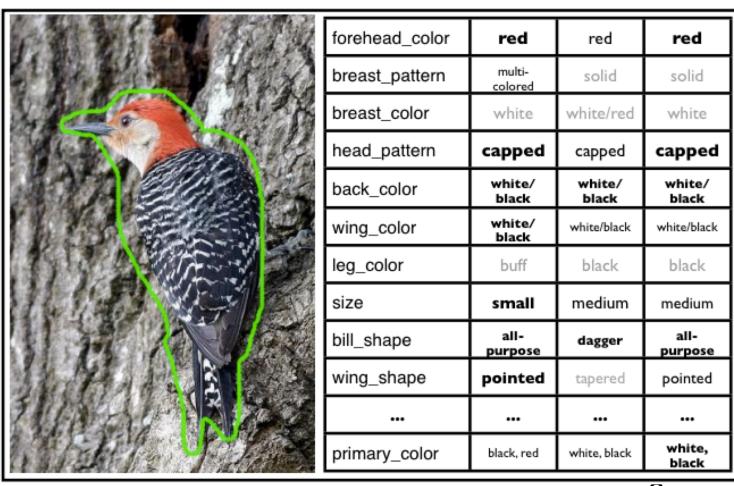
[Akata, etal, 2015]

[Xian, et al., 2017]

Drawbacks

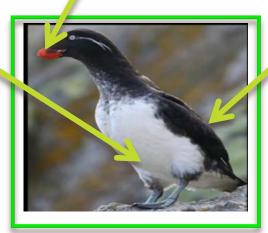
- the dilemma of finding the best set of visual attributes
- Manual annotation for hundreds of attributes per class/image

Example Attributes as Side Information



Write a Classifier: ZSL from Pure Text Descriptions

Parakeet Auklet is a small bird that has a short orange peak. The bird's plumage is dark above and white below.



Interestingly, it is easy to collect such descriptions from sources like Wikipedia. However, it is a more challenging problem.

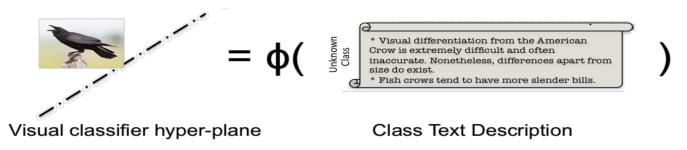
[Elhoseiny et al., ICCV, 2013]

Linear Write a Classifier

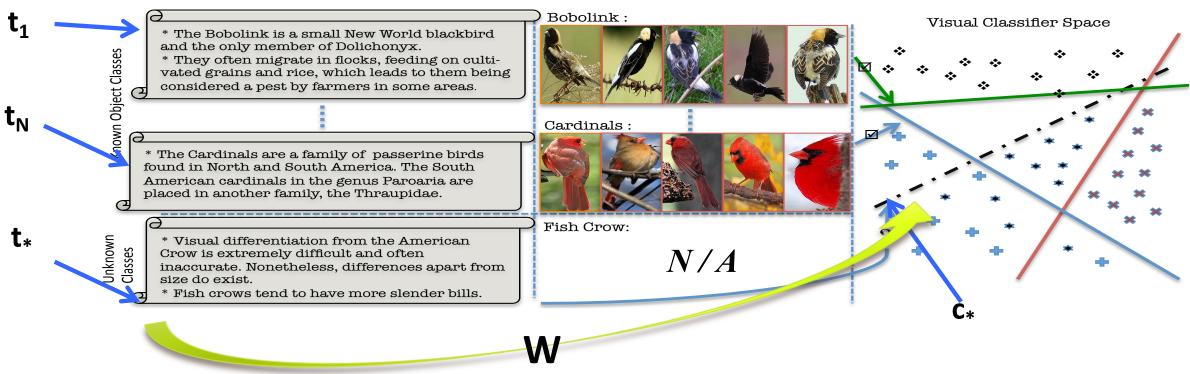
- We assume a linear classifier $f_k(\mathbf{x}) = \mathbf{c}_k^{\mathsf{T}} \cdot \mathbf{x}$

 \mathbf{c}_k is a linear classifier for class k, \mathbf{x} is a visual feature vector appended by 1.

- The prediction in multiclass setting is $\ l^* = rg \max_k f_k(\mathbf{x})$
- Could we explicitly predict classifier parameters of unseen classes from Unstructured Text?



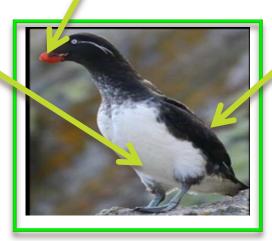
Linear Write a Classifier: Learning W



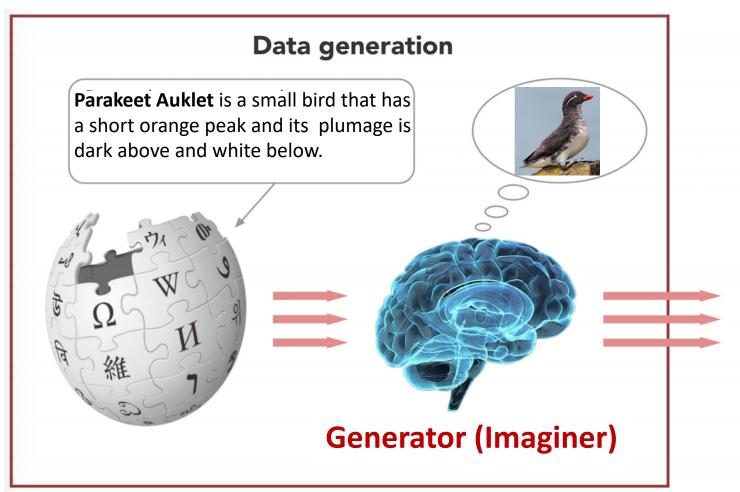
 $\mathbf{t_i}^\mathsf{T} \mathbf{W} \mathbf{x_j} > 1$ if $\mathbf{t_i}$ and $\mathbf{x_j}$ belong to the same class, $\mathbf{t_i}^\mathsf{T} \mathbf{W} \mathbf{x_j} < -1$ otherwise

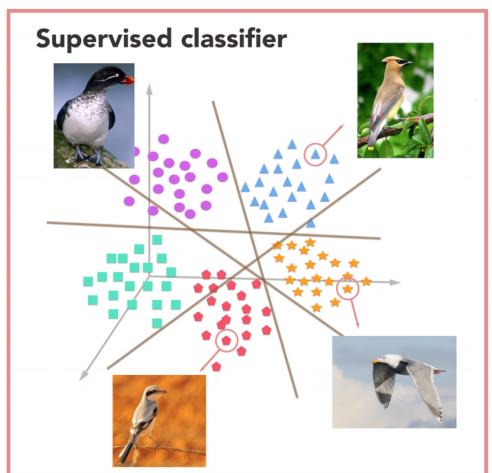
We haven't explicitly modeled imagination

Parakeet Auklet is a small bird that has an short **orange** peak. The bird's plumage is **dark** above and **white** below.



Imaginative Visual Classifier from Wikipedia Description

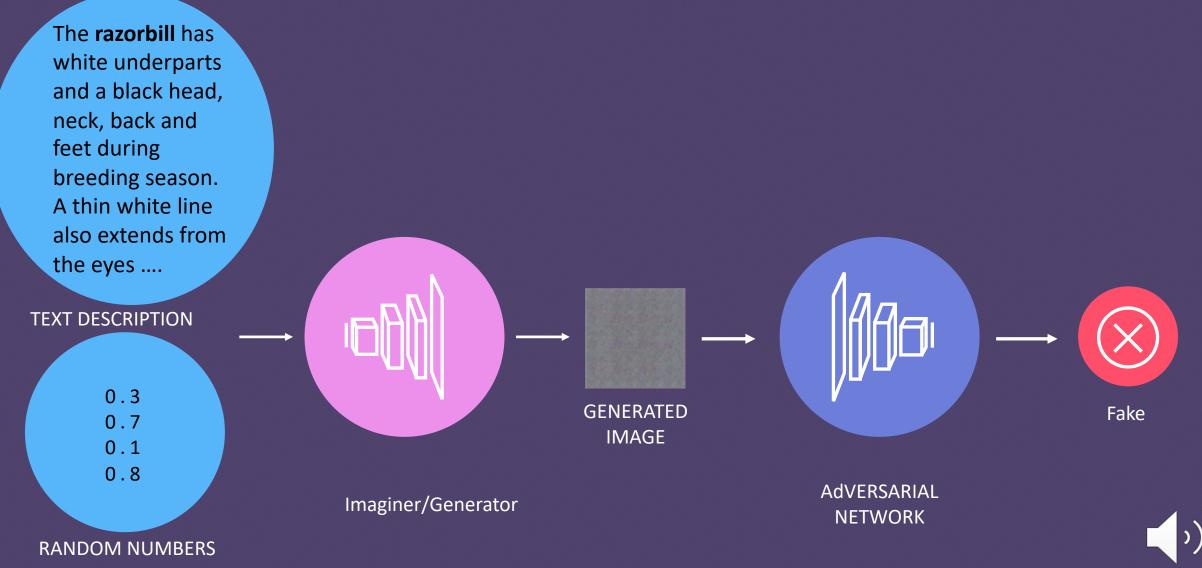




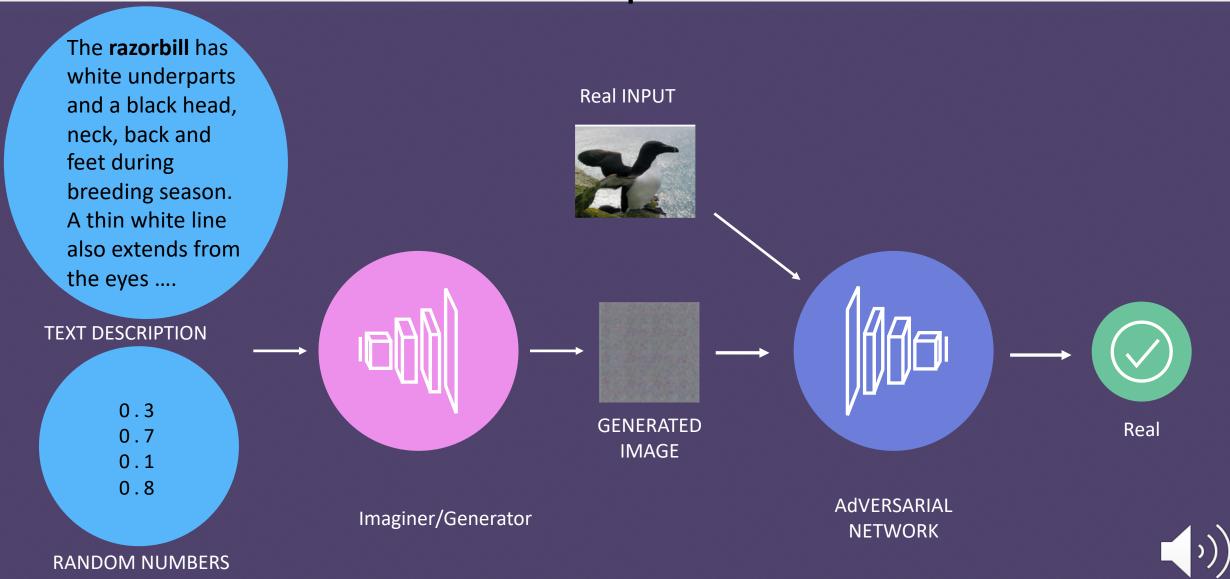
Generative Adversarial Networks (GAN)

[Godfellow et al., NIPS, 2014]

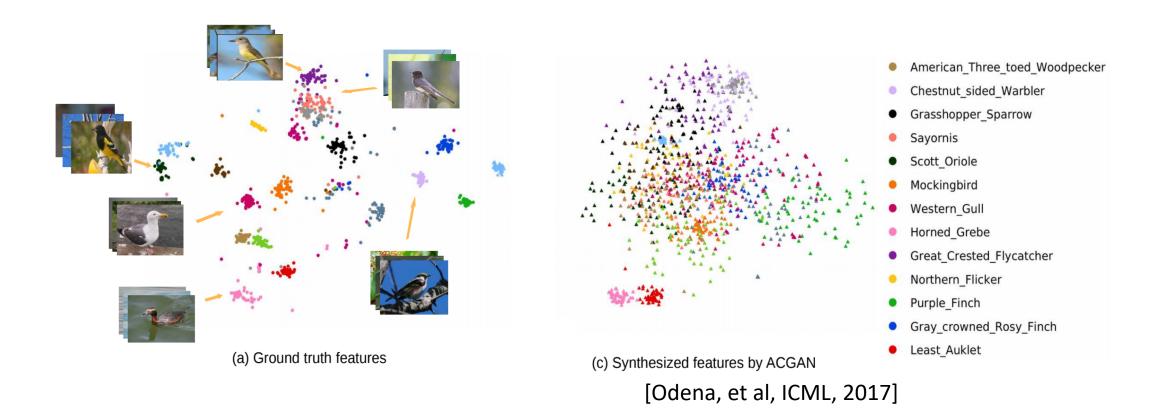
Imaginative Visual Classifier from Wikipedia Description



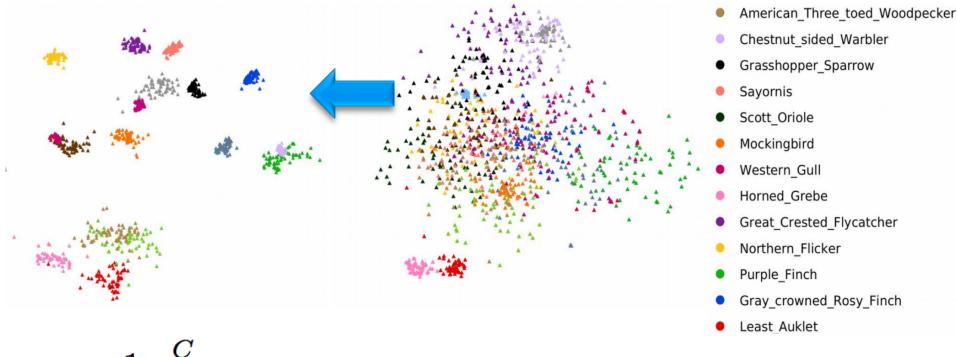
Imaginative Visual Classifier from Wikipedia Description



Directly Applying Vanilla GAN does not work.

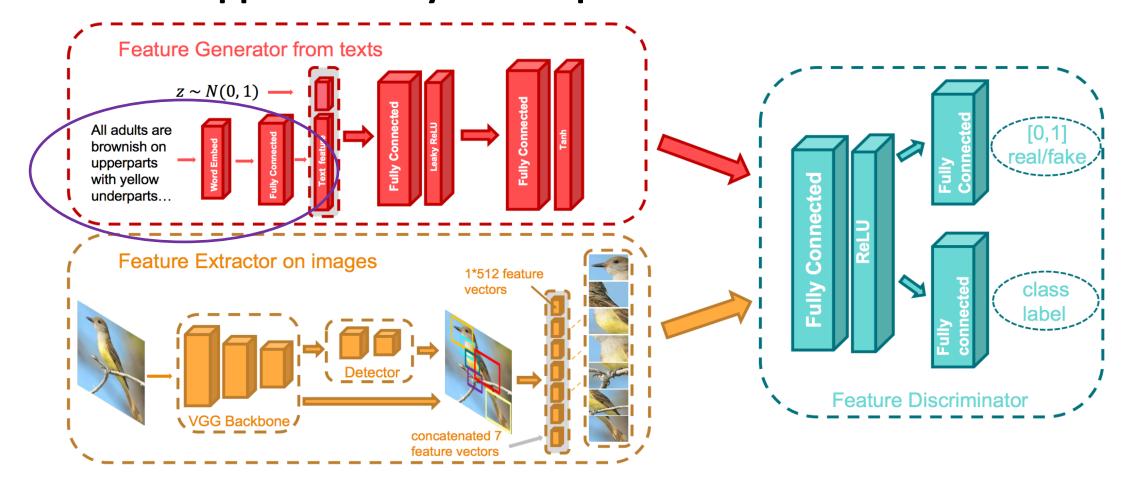


Visual Pivot Regularizer



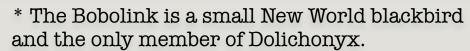
$$L_e = \frac{1}{C} \sum_{c=1}^{C} ||\mathbb{E}_{\tilde{x}_c \sim p_g^c}[\tilde{x}_c] - \mathbb{E}_{x_c \sim p_{data}^c}[x_c]||^2,$$

Note the Noise Suppression Layer on Top of Text



Wiki-CUB benchmark

- We extracted textual description available as augmentations of the CUB dataset of 200 species and 11000 images.
- 150 categories for training and 50 for testing.



* They often migrate in flocks, feeding on cultivated grains and rice, which leads to them being considered a pest by farmers in some areas.

* The Cardinals are a family of passerine birds found in North and South America. The South American cardinals in the genus Paroaria are placed in another family, the Thraupidae.

Bobolink:

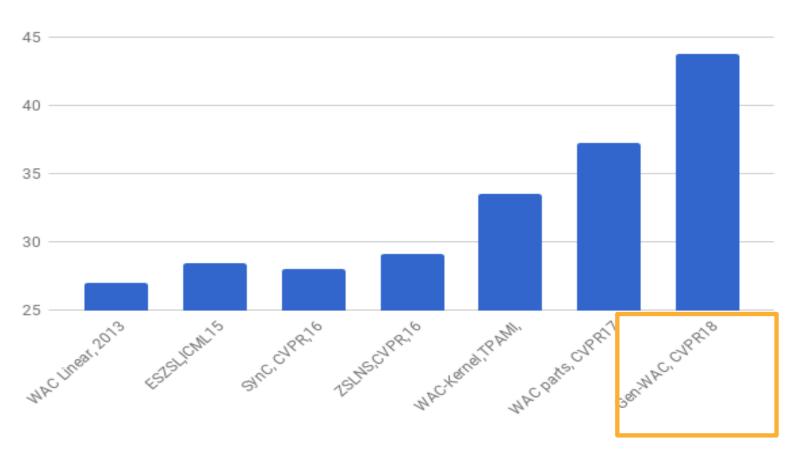
Cardinals:

Ablation Study

w/ FC means with Noise Suppression Layer.

	CUB		NAB	
methods	w/FC	w/o FC	w/ FC	w/o FC
GAN-only VP-only Ours	22.83 28.52 43.74	21.83 26.76 40.85	24.22 25.75 35.58	24.80 23.42 32.94

Comparison to the ZSL State of the Art

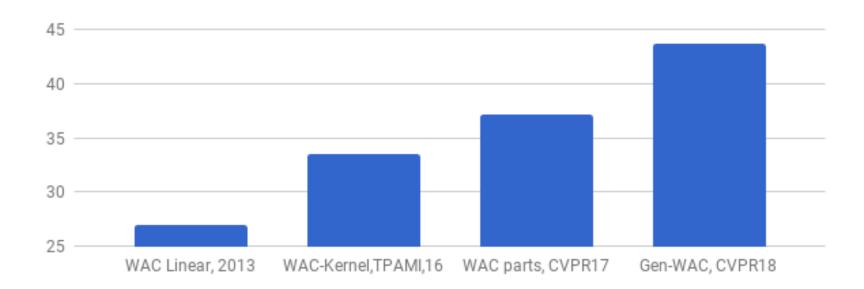


Parallel work in related problems

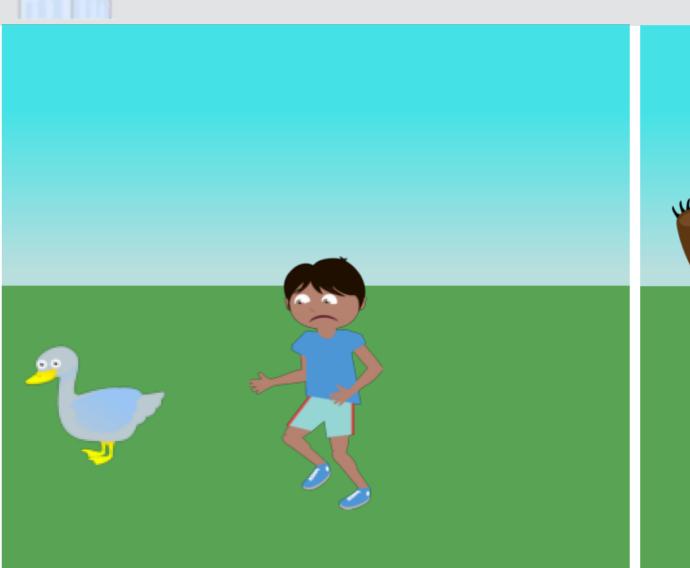
[Xian, etal, 2018] [Bharath, etal, 2017] [Wang etal, 2018] [YZ etal, 2018]

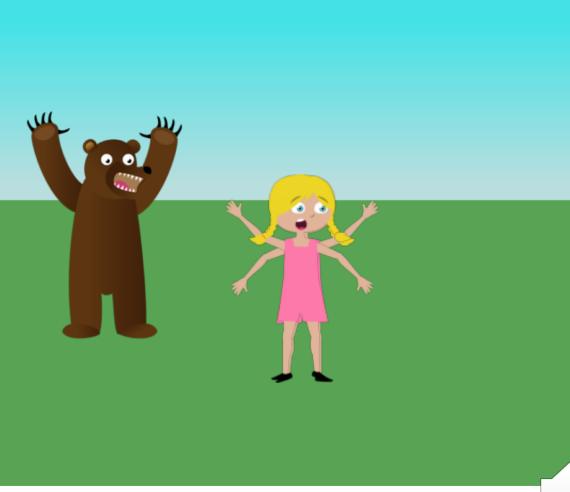
Write a Classifier (5 year Summary)

- [ESE, ICCV, 2013]: Linear approach with 26% on CUB
- [EES, TPAMI, 2016] Non non-linear kernel classifiers with 33.5% on CUB
- [EZE, CVPR, 2017] Modeling the parts notion with 37.2% on CUB
- [ZELE,CVPR, 2018] Modeling a visual imaginer from text helps with 43.7% on CUB



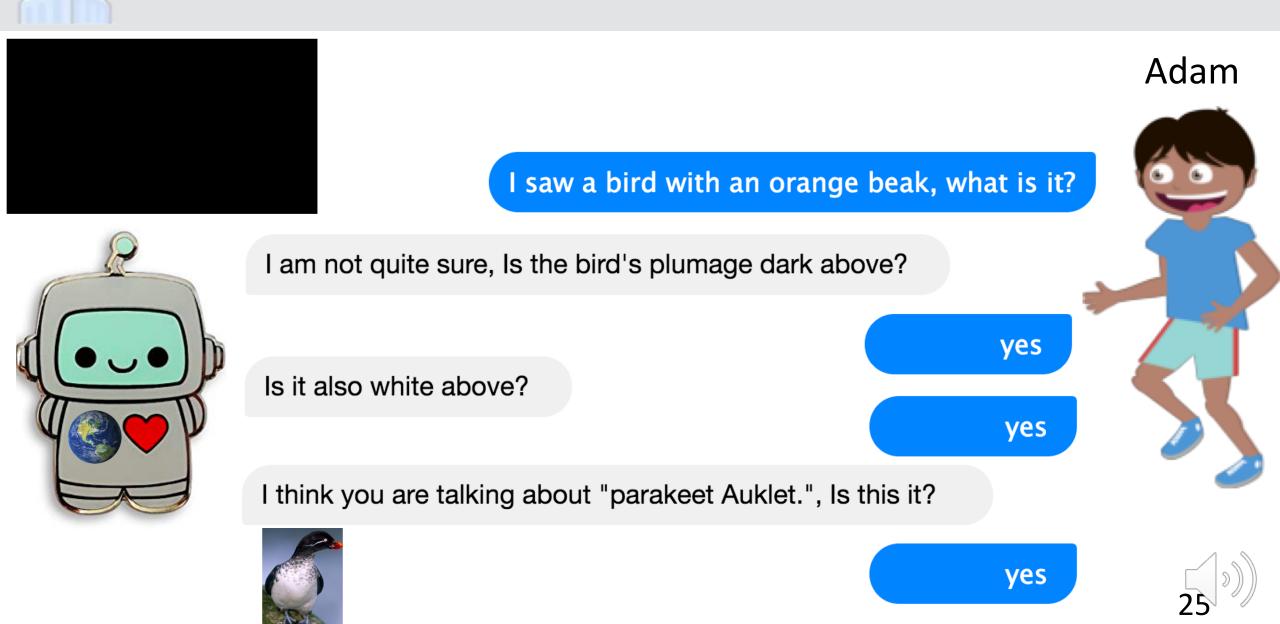
We often encounter this



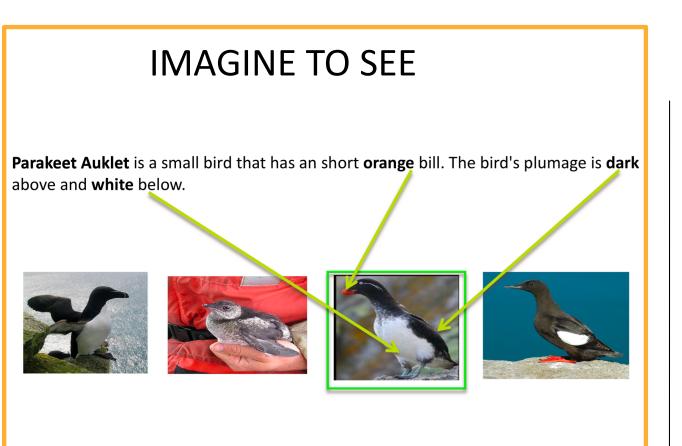


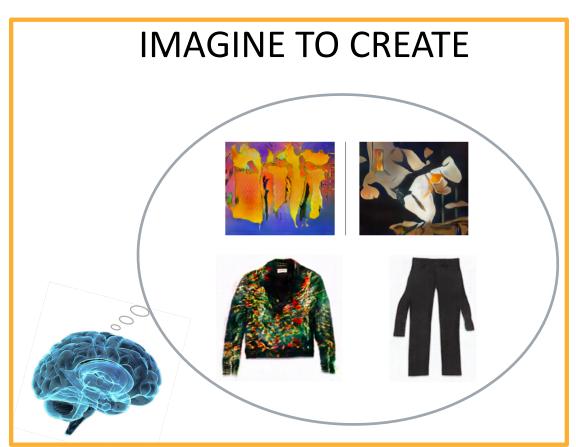
To visualize this scenario, I used cartoon characters from Abstract Scenes dataset (C. L. Zitnick and D. Parikh, 2013)

AI: An Additional Arm to help Mother Nature at UN

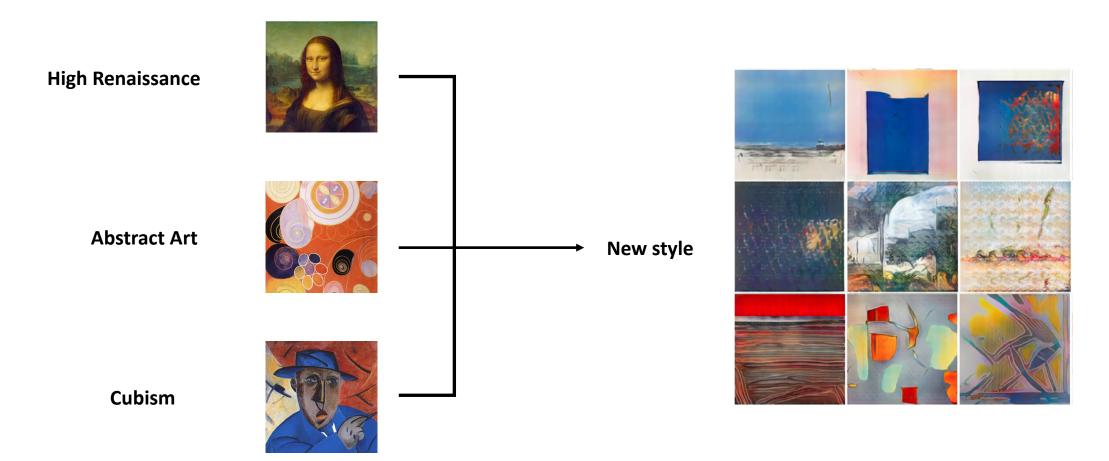


Imagination Inspired Vision



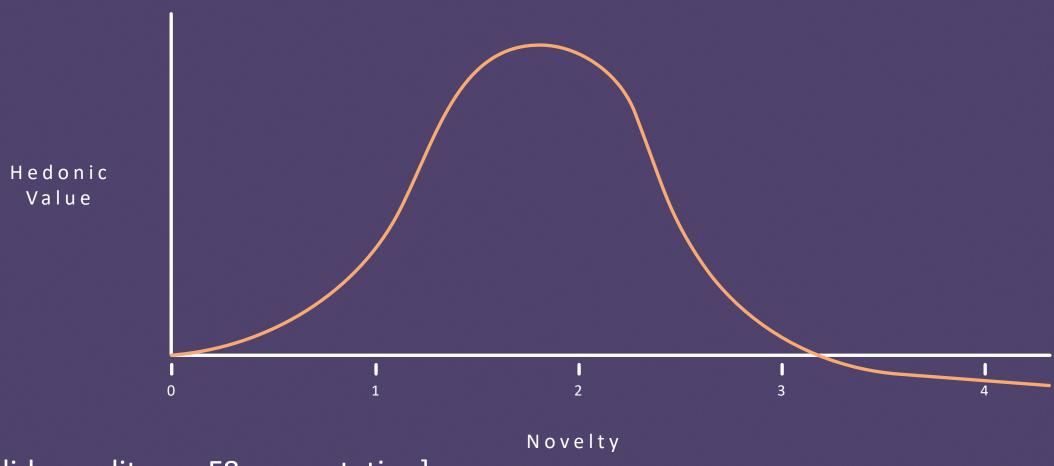


Creation from Random Numbers



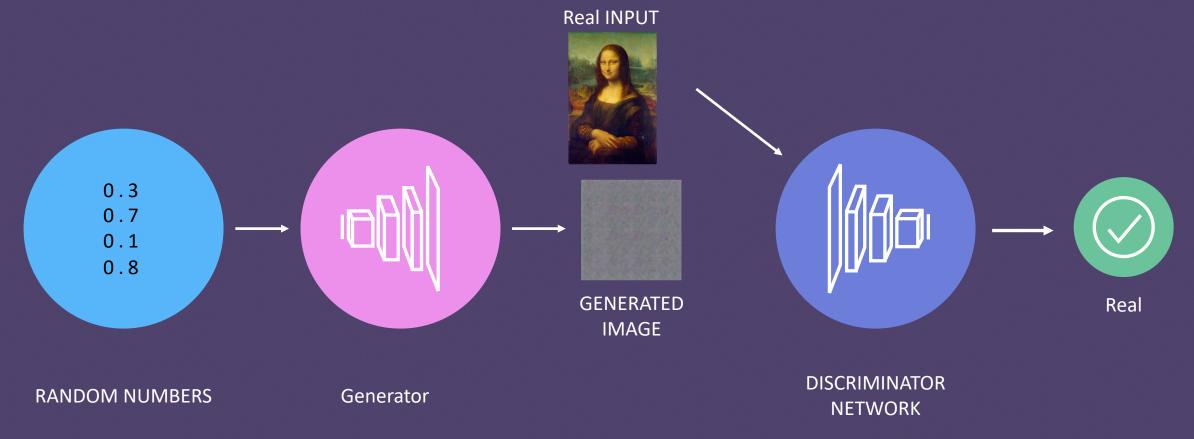
[ELEB., ICCC, 2017]

Principle of least effort: Wundt curve



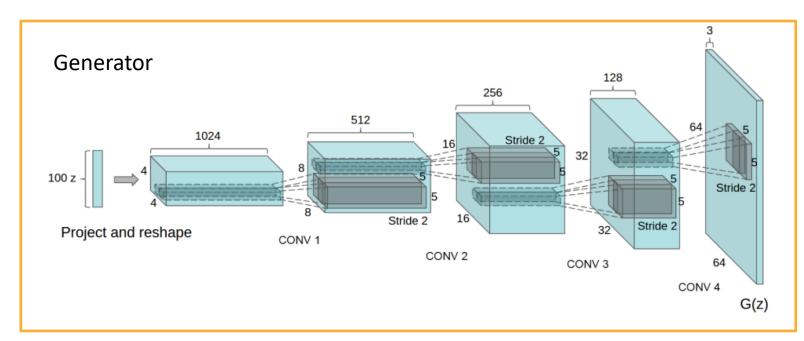
[Slide credit, our F8 presentation]

Generative Adversarial Networks



[Slide credit, our F8 presentation]

GAN has no motivation to be creative



AI Creative Artist?

No, not creative.

Wiki Art 20 Style Classes and Modeling the deviation

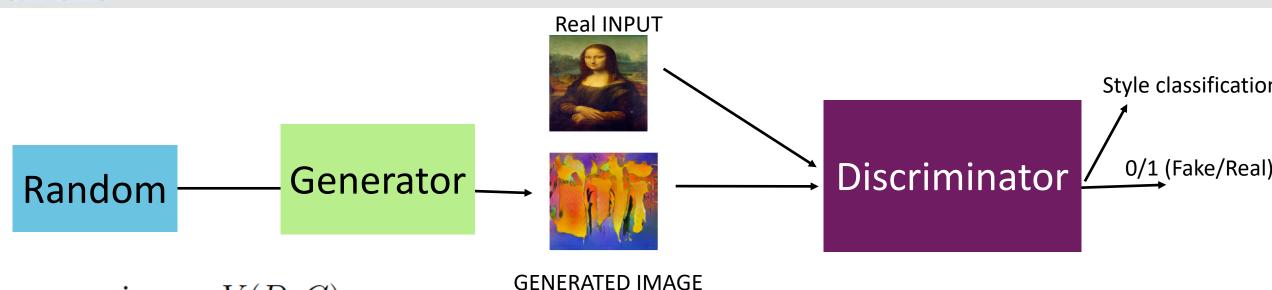
Abstract Art

Cubism

Impressionism

High Renaissance

.



$$\min_{G} \max_{D} V(D,G) =$$

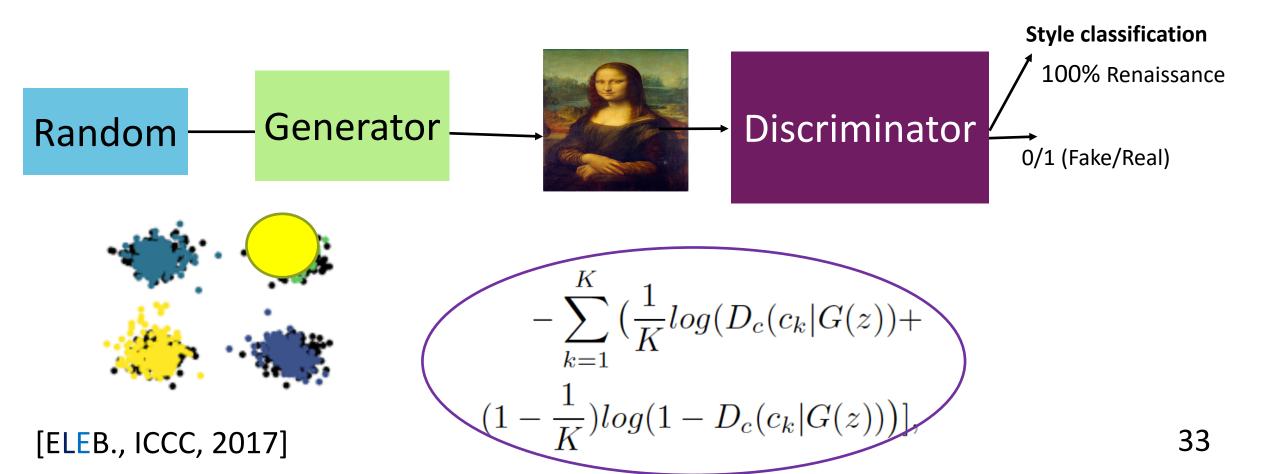
$$\mathbb{E}_{x,\hat{c} \sim p_{data}}[\log D_r(x) + \log D_c(c = \hat{c}|x)] +$$

$$\mathbb{E}_{z \sim p_z}[\log(1 - D_r(G(z))) - \sum_{k=1}^{K} \left(\frac{1}{K}log(D_c(c_k|G(z)) + \frac{1}{K})log(1 - D_c(c_k|G(z)))\right)],$$

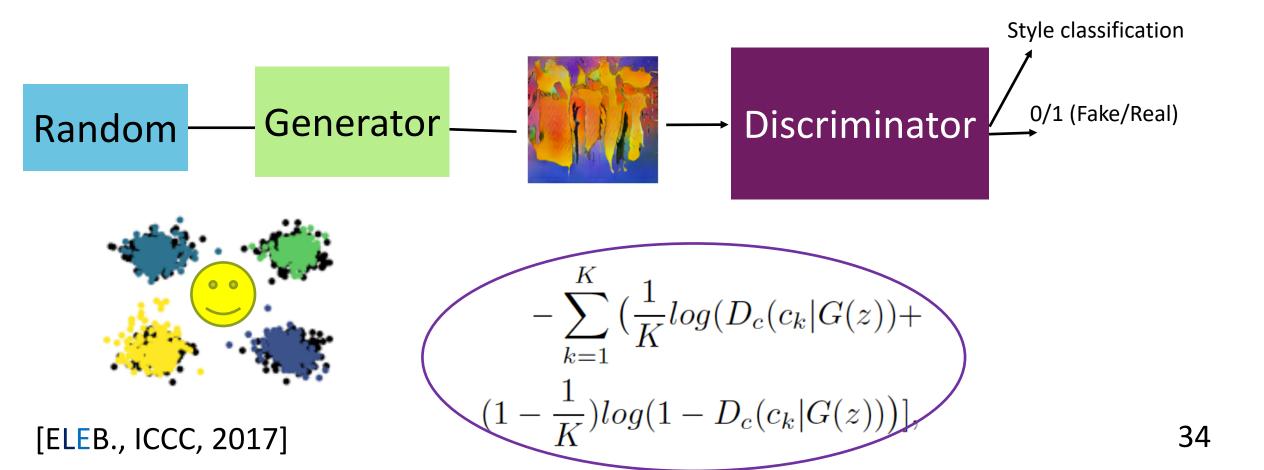
Creativity Loss

[ELEB., ICCC, 2017]

Low Style Ambiguity (low Entropy)= Low Creativity



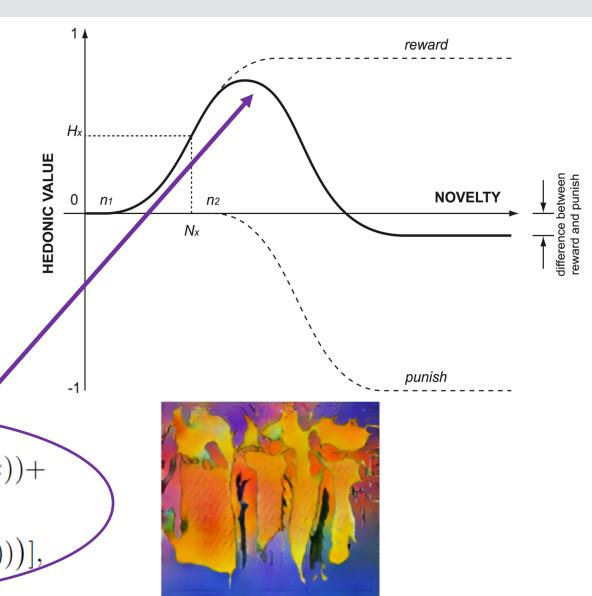
High Style Ambiguity (high Entropy)= high Creativity



Loss and Connection to the Principle Of Least Effort

Colin Martindale (1943–2008)

$$\min_{G} \max_{D} V(D, G) = \\ \mathbb{E}_{x, \hat{c} \sim p_{data}} [\log D_r(x) + \log D_c(c = \hat{c}|x)] + \\ \mathbb{E}_{z \sim p_z} [\log(1 - D_r(G(z))) - \sum_{k=1}^{K} \left(\frac{1}{K} log(D_c(c_k|G(z)) + \frac{1}{K}) log(1 - D_c(c_k|G(z)))\right],$$

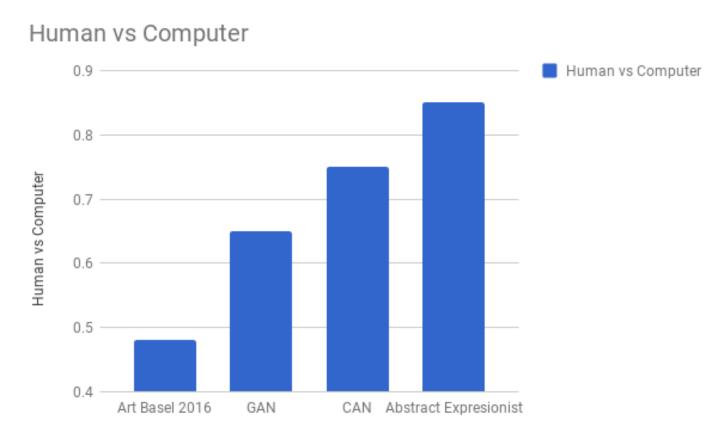


[ELEB., ICCC, 2017]

Qualitative Examples

Creative Adversarial Networks

Human Subject Experiments: Turing Test (Human vs Computer) ~100 images for each set



Creative Adversarial Networks

Q1: Intentionality

Q2: Structure

Q2: Communication

Q4: Inspiration

Q2:STR

Q4:INS

Painting set	Q1 (std)	Q2 (std)	Q3 (std)	Q4 (std)
CAN	3.3 (0.47)	3.2 (0.47)	2.7 (0.46)	2.5 (0.41)
Abstract Expressionist	2.8 (0.43)	2.6 (0.35)	2.4 (0.41)	2.3 (0.27)
Art Basel 2016	2.5 (0.72)	2.4 (0.64)	2.1 (0.59)	1.9(0.54)
Artist sets combined	2.7 (0.6)	2.5 (0.52)	2.2 (0.54)	2.1 (0.45)

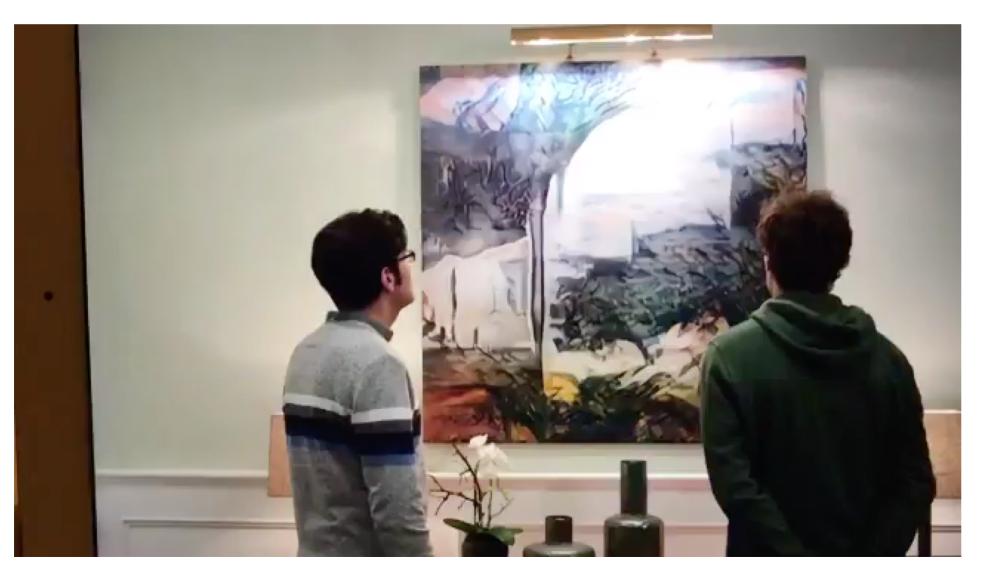
CAN Impact

In addition to the scientific impact, CAN has also been covered at

- Media attention:
 - MIT tech review,
 - New scientist
 - Others
- Exhibitions:
 - Frankfurt Book Fair
 - Los Angeles Art Exhibition

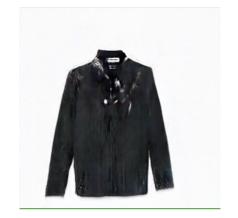
- Invited Talks:
 - Best of Al meeting
 - NIPS 2017 Creativity workshop
- FB CAN Demo
 - NIPS17 FB booth
 - FAIR video

HBO Silicon Valley TV Series



Creative Fashion Networks

[JACKETS & SWEATERS]



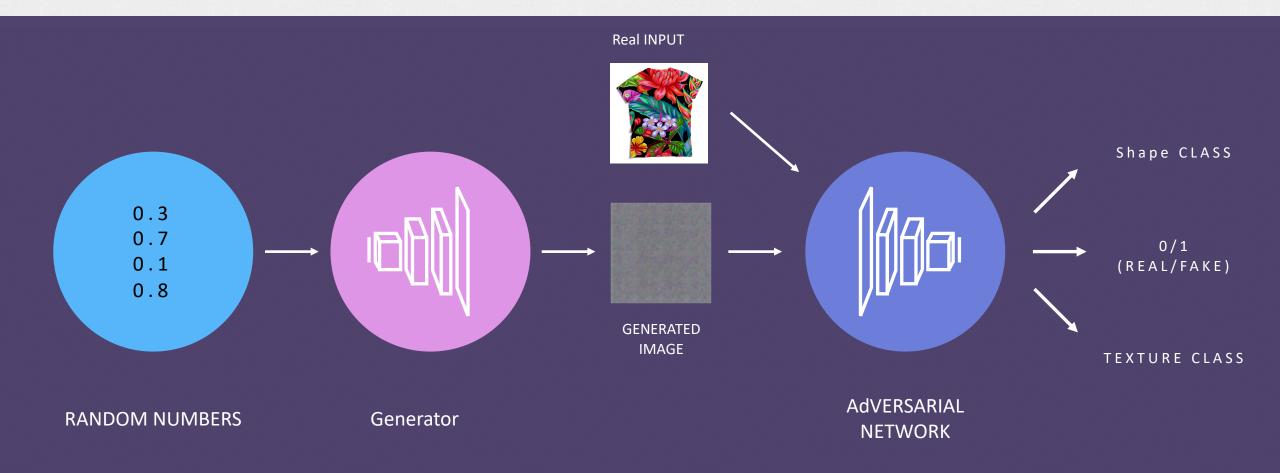
Creative Fashion Networks

Al Creativity Potential impact

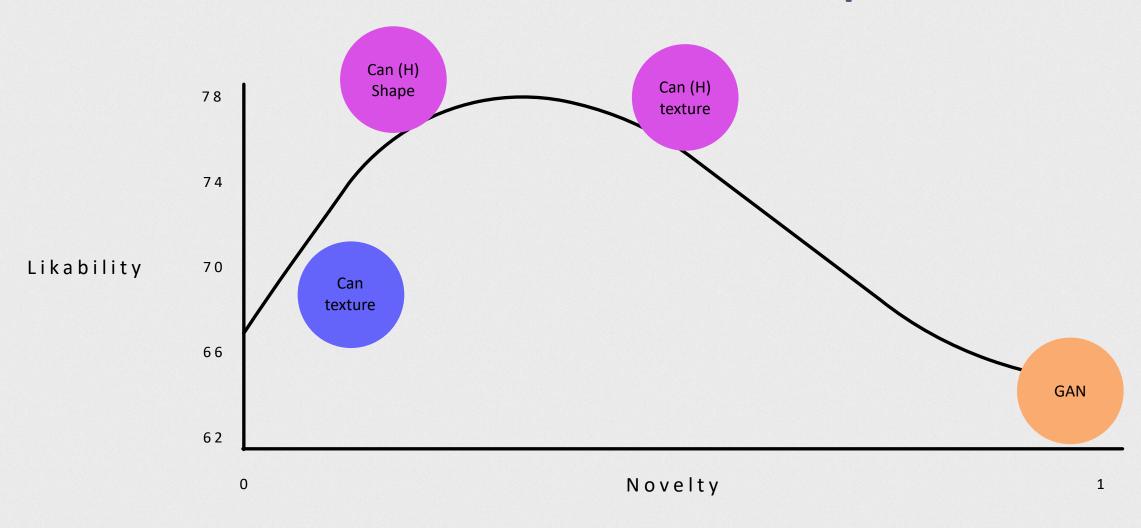
benefit people's experience

 Additional sources of inspiration for creating unexpected products that are related to the brand DNA.

Creative Fashion Networks



Creative Models are Most Popular



"interesting" Shapes

[Slide credit, our F8 presentation with Camille Couprie]

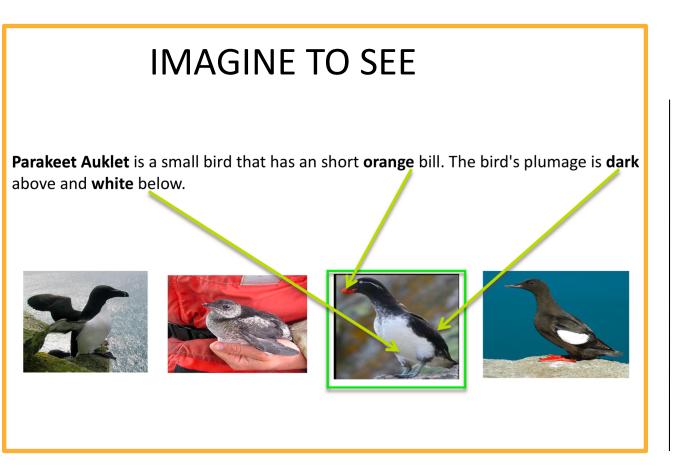
Creative Fashion Generation

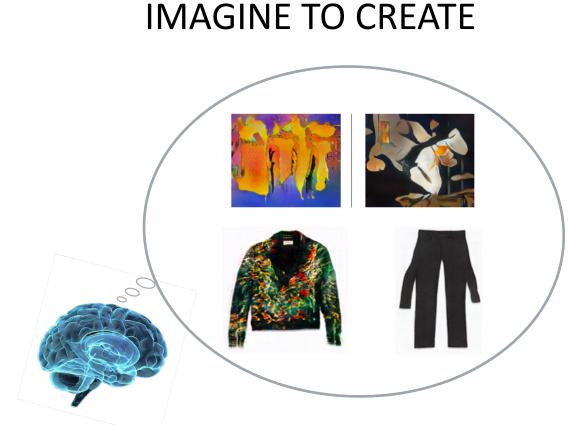
ECCV18 workshop best paper award

- Media attention
 - New scientist

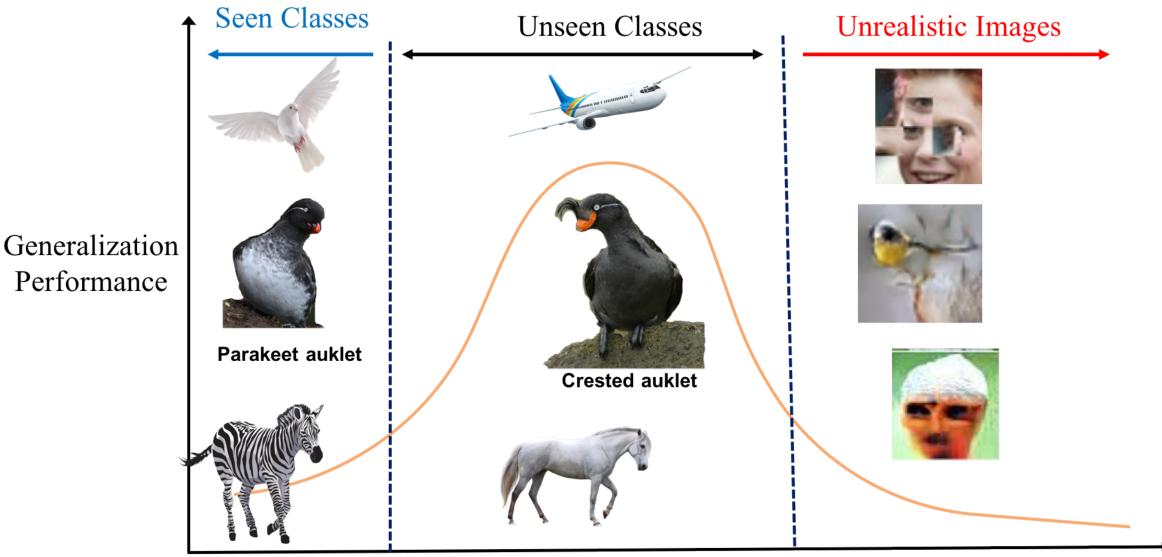
- F8 conference presentation
 - High impact main Facebook conference

Creativity/Ambiguity Loss loops back to help understanding the unseen



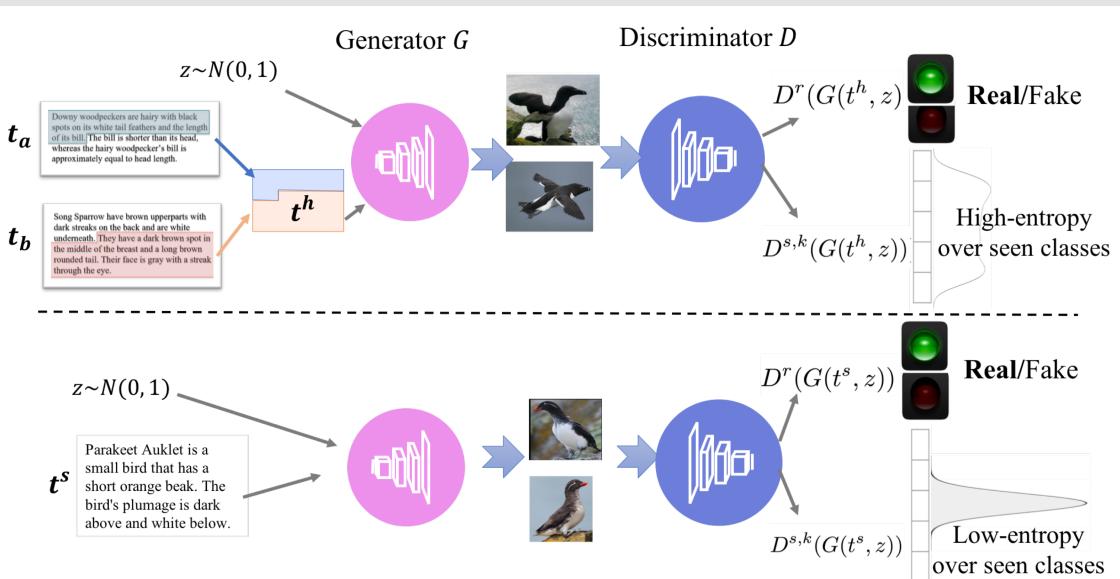


Creativity Inspired Zero-Shot Learning, submitted

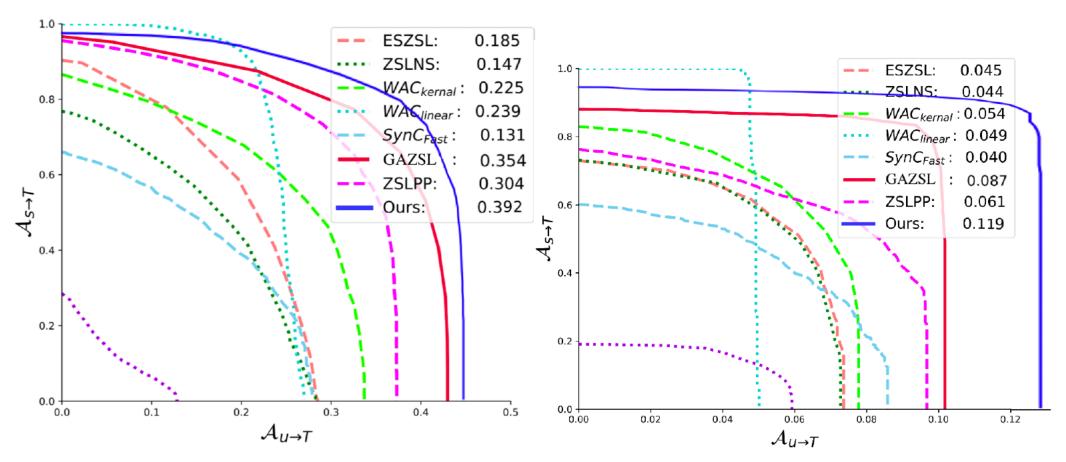


Novelty against seen classes

Creativity Inspired Zero-Shot Learning, submitted



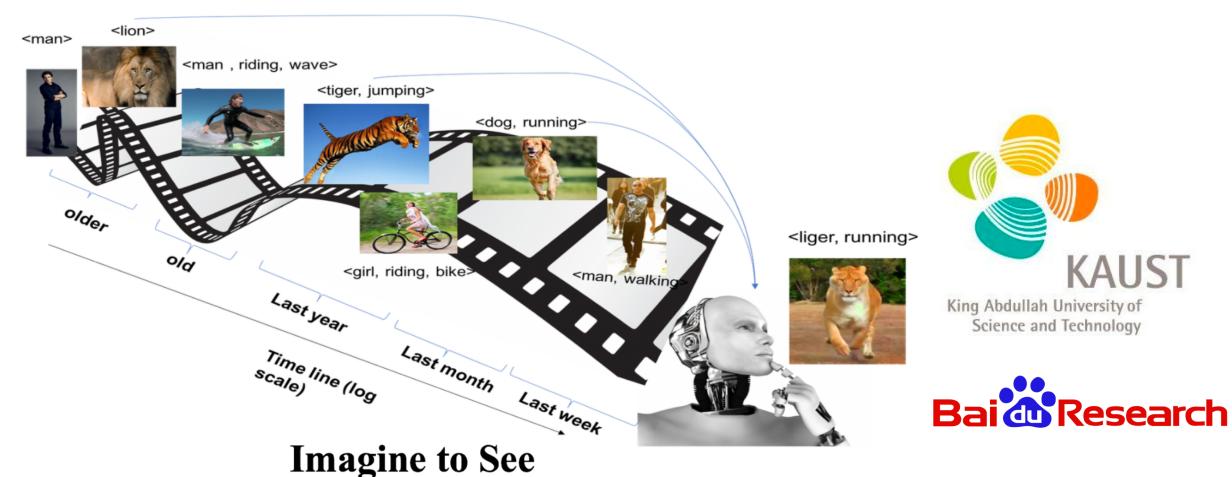
Generalized ZSL Results on CUB



(a) CUB with SCS splitting

(b) CUB with SCE splitting

Ongoing Work



Earlier work

[1] Large Scale Visual Relationship Understanding, [Zhang, Khaldis, Paluri, Rohbrach, Elhoseiny, AAAI, 2019

References

2019 Submissions/Publications(2 publications and 3 preprints, 4/5 as a main FB author)

- 1. M Elhoseiny, M Elfeki, "Creativity Inspired Zero Shot Learning", CVPR submission, 2019
- 2. M. Elfeki, C. Couprie, M. Elhoseiny, "GDPP: Learning Diverse Generations using Determinantal Point Processes", ICML S, 2019
- 3. S Ebrahimi, M Elhoseiny, T Darrell, M Rohrbach, "Uncertainty-guided Lifelong Learning in Bayesian Networks", ICML S, 2019
- 4. A. Chaudhry, M. Ranzato, M Rohrbach, M. Elhoseiny, "Efficient Lifelong Learning with A-GEM", ICLR, 2019
- 5. **J. Zhang,Y. Khaladis, M. Rohbrach, M. Paluri, M. Elhoseiny**, "Large-Scale Visual Relationship Understanding", **AAAI**, 2019 (accepted)

2018 Publications (5-6/7 publications as a main FB author)

- 1. R Aljundi, F Babiloni, M Elhoseiny, M Rohrbach, T Tuytelaars, "Memory Aware Synapses: Learning what (not) to forget", ECCV 2018
- 2. **R. Selvaraju,** P. Chattopadhyay, <u>M Elhoseiny</u>, T Sharma, D. Batra, D. Parikh, S. Lee, "Choose your Neuron: Incorporating Domain Knowledge through Neuron Importance", ECCV, 2018
- 3. Y. Zhu, M. Elhoseiny, B Liu, A. Elgammal, "Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts", CVPR, 2018
- 4. **O. Sbai*, M. Elhoseiny*, C. Couprie, A. Bordes, Y. LeCun**, "DesIGN: Design Inspiration from Generative Networks", **ECCVW**, 2018, best paper award, also JMLR 19 submission
- 5. A. Elgammal, M. Mazzone, , B. Liu, and D. Kim, M. Elhoseiny, and "The Shape of Art History in the Eyes of the Machine", AAAI, 2018 (oral)
- 6. M Elhoseiny, F Babiloni, R Aljundi, M Rohrbach, T Tuytelaars, "Towards Human-Like Life-long Fact Learning", ACCV, 2018
- 7. M. Elhoseiny, Yi. Zhu, and Ahmed Elgammal, "Language Guided Visual Recognition", Deep Learning Semantic Recognition Book, 2018

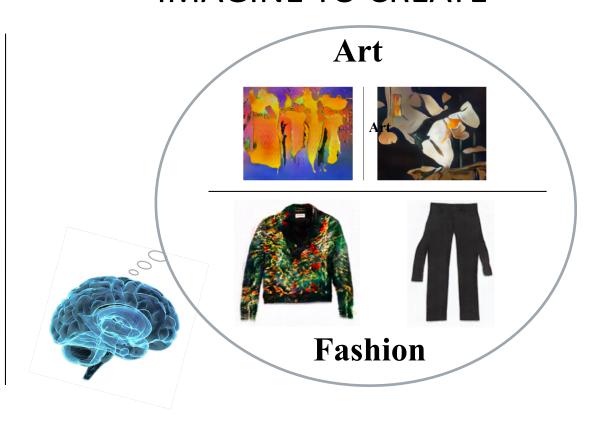
Thank you, Questions?

IMAGINE TO SEE

Parakeet Auklet is a small bird that has an short **orange** bill. The bird's plumage is **dark** above and **white** below.

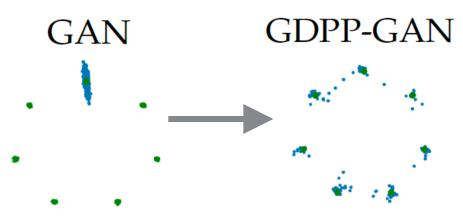
[ESE, ICCV, 2013], [EES, TPAMI, 2016] [EZE, CVPR, 2017] [ZELE, CVPR, 2018]

IMAGINE TO CREATE



[ELEB., ICCC, 2017] [SEBLC, 2018]

Helping the Imaginer: Generative DPP, ICML19 Submission



Our loss only requires a generator G and a feature extraction function ϕ , which is:

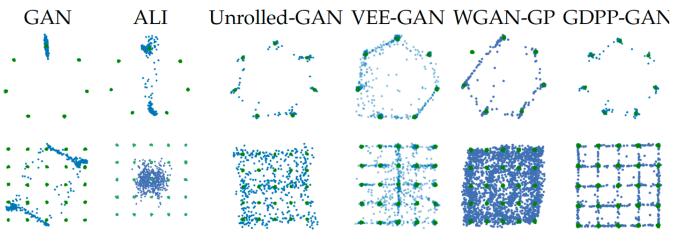
- 1. Resisting mode collapse
- 2. Data Efficient
- 3. Time Efficient
- 4. Stabilizes adversarial training
- 5. Producing higher quality samples

- 6. Architecture invariant
- 7. Unsupervised: No labels
- 8. Cost free: No trainable parameters
- 9. Generic: The loss can be added to *ANY* generative model.

[Elfeki, Couprie, Elhoseiny, ICLR 2019 submission]

Helping the Imaginer:

Generative DPP with M Elfeki and C. Couprie, ICML19 S



	2D Ring		2D Grid		1200D Synthetic	
	Modes	% High Quality	Modes	% High Quality	Modes	% High Quality
	(Max 8)	Samples	(Max 25)	Samples	(Max 10)	Samples
GAN	1	99.3	3.3	0.5	1.6	2.0
ALI	2.8	0.13	15.8	1.6	3	5.4
Unrolled GAN	7.6	35.6	23.6	16.0	0	0.0
VEE-GAN	8.0	52.9	24.6	40.0	5.5	28.3
WGAN-GP	6.8	59.6	24.2	28.7	6.4	29.5
GDPP-GAN	8.0	71.7	24.8	68.5	7.4	48.3

Data and Time Efficiency

