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Our lab studies the role of causality in our 
understanding of the world, and of each other.
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Pearl, J. (2019). The seven tools of causal inference, with reflections on 
machine learning. Communications of the ACM, 62(3), 54-60. 
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In The Conceptual Mind: New Directions in the Study of Concepts. MIT Press. 
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Title TextIntuitive theories as probabilistic programs

Battaglia, Hamrick & Tenenbaum (2013) Simulation as an engine of physical scene understanding. 
Proceedings of the National Academy of Sciences  

How do we do()in a probabilistic program?

How do we simulate counterfactuals?

Beyond structural equations
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What happened? What would have happened?

Gerstenberg, Goodman, Lagnado, & Tenenbaum (2012) Noisy Newtons: Unifying process and dependency accounts of causal attribution. 
Cognitive Science Proceedings
Gerstenberg, Goodman, Lagnado, & Tenenbaum (2014) From counterfactual simulation to causal judgment. Cognitive Science Proceedings
Gerstenberg, Goodman, Lagnado, & Tenenbaum (2015) How, whether, why: Causal judgments as counterfactual contrasts. Cognitive Science 
Proceedings
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B went through the gate

Actual situation ?

Gerstenberg, Goodman, Lagnado, & Tenenbaum (2012) Noisy Newtons: Unifying process and dependency accounts of causal attribution. 
Cognitive Science Proceedings
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Gerstenberg, Goodman, Lagnado, & Tenenbaum (2012) Noisy Newtons: Unifying process and dependency accounts of causal attribution. 
Cognitive Science Proceedings



Gerstenberg, Goodman, Lagnado, & Tenenbaum (2012) Noisy Newtons: Unifying process and dependency accounts of causal attribution. 
Cognitive Science Proceedings
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Gerstenberg, Goodman, Lagnado, & Tenenbaum (2012) Noisy Newtons: Unifying process and dependency accounts of causal attribution. 
Cognitive Science Proceedings
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Causal judgment

represent
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Probabilistic program

objects

processes
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Chater & Oaksford (2013) Programs as causal models: Speculations on mental programs and mental representation. Cognitive Science  
Goodman, Tenenbaum, & Gerstenberg (2015) Concepts in a probabilistic language of thought. The Conceptual Mind: New Directions in the 
Study of Concepts  



What else?
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Hall (2004) Two concepts of causation. Causation and 
Counterfactuals  
Paul & Hall (2013). Causation: A User's Guide 
Salmon (1994) Causality without counterfactuals. Philosophy of 
Science  

Talmy (1988) Force dynamics in language and cognition. Cognitive 
Science  
Walsh & Sloman (2011) The meaning of cause and prevent: The role 
of causal mechanism. Mind & Language
Wolff (2007) Representing causation. Journal of Experimental 
Psychology: General  



Did					prevent					from	going	through	the	gate?A B

Counterfactuals	are	necessary

Gerstenberg, Goodman, Lagnado, & Tenenbaum (2014) From counterfactual simulation to causal judgment. Cognitive Science Proceedings 



Aha!

Counterfactuals	are	necessary

Gerstenberg, Goodman, Lagnado, & Tenenbaum (2014) From counterfactual simulation to causal judgment. Cognitive Science Proceedings 
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Actual Counterfactual

Counterfactuals	are	necessary

Gerstenberg, Goodman, Lagnado, & Tenenbaum (2014) From counterfactual simulation to causal judgment. Cognitive Science Proceedings 
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Gerstenberg, Goodman, Lagnado, & Tenenbaum (2014) From counterfactual simulation to causal judgment. Cognitive Science Proceedings 



Spontaneous	counterfactual	simula0on

Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum (2017) Eye-tracking causality. Psychological Science  



Spontaneous	counterfactual	simula0on

1/2 speed

Did							completely	miss	the	gate?B

Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum (2017) Eye-tracking causality. Psychological Science  



Spontaneous	counterfactual	simula0on

1/2 speed

Did							prevent								from	go	through	the	gate?BA

Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum (2017) Eye-tracking causality. Psychological Science  
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Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum (2017) Eye-tracking causality. Psychological Science  



Title TextCounterfactual simulation model of causal judgment
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• people spontaneously engage in 
counterfactual simulation when 
making causal judgments
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• causal judgments are well-explained 
by the observer's beliefs about 
whether the candidate cause made a 
difference to the outcome
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How responsible is the black brick for 
the red bricks staying on the table?

Gerstenberg, Zhou, Smith, & Tenenbaum (2017) 
Faulty towers: A counterfactual simulation model of 
physical support. Cognitive Science Proceedings 

To what extent were A and B responsible 
for E going through the gate?

Gerstenberg, Goodman, Lagnado, & Tenenbaum (2015) 
How, whether, why: Causal judgments as counterfactual 
contrasts. Cognitive Science Proceedings

Did ball A cause/enable/help ball B to 
go through the gate?

Gerstenberg & Tenenbaum (2017) Intuitive 
Theories. Oxford Handbook of Causal Reasoning  

the language 
of causation

EE BAA

multiple 
causes

Sosa, Ullman, Gershman, Tenenbaum & Gerstenberg 
(submitted) Moral Dynamics.

How bad was what Blue did to Green?
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/3
statistical integration integration via 

mental simulation
Siegel, Magid, Tenenbaum, & Schulz (2014) Black boxes: Hypothesis testing via indirect perceptual evidence. CogSci Proceedings  

Yildirim (2014) From perception to conception: learning multisensory representations. PhD thesis

Causal inference: Multi-modal integration through mental simulation









Prediction: Where will the ball land?

creepy 
hand



Prediction: Where will the ball land?



Prediction: Where will the ball land?



Prediction: Where will the ball land?



Prediction: Where will the ball land?

people model

?
drop noise

?collision 
noise

Ullman, Spelke, Battaglia, & Tenenbaum (2017) Mind Games: Game Engines as an 
Architecture for Intuitive Physics. Trends in Cognitive Sciences  

Smith & Vul (2013) Sources of uncertainty in intuitive physics. Topics in Cognitive Science 
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Inference: In which hole was the ball dropped?



Inference: In which hole was the ball dropped?
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Inference: In which hole was the ball dropped?



Inference: In which hole was the ball dropped?



Inference: In which hole was the ball dropped?
distance between ball's true x 
position and x position in sample
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Inference: In which hole was the ball dropped?

t = [37, 77]

...

t1 = [16, 60, 99]
t2 = [16, 56, 99]
t3 = [15, 81, 95] ...

t1 = [37, 79]
t2 = [37, 78]
t3 = [37, 75] ...

t1 = [45]
t2 = [45]
t3 = [45]

t = [37, 77]

t1 = [37, 79]t1 = [16, 60, 99]

t = [37, 77]
+ penalty

t1 = [45]

t = [37, 77]
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average temporal distance 
between time points
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Inference: In which hole was the ball dropped?
distance between ball's true x 
position and x position in sample
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t = [37, 77]

... ... ...

*
multiplicative integration
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t2 = [37, 78]
t3 = [37, 75]

t1 = [45]
t2 = [45]
t3 = [45]
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between time points
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Inference: In which hole was the ball dropped?
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Gerstenberg & Tenenbaum (2017) Intuitive Theories. Oxford Handbook of Causal Reasoning 

Goodman, Tenenbaum, & Gerstenberg (2015) Concepts in a probabilistic language of thought. The Conceptual 
Mind: New Directions in the Study of Concepts 

Lake, Ullman, Tenenbaum, & Gershman (2016) Building machines that learn and think like people. Behavioral and 
Brain Sciences  

• we build rich mental models of the world 

• we simulate these models to:  

- predict the future  

- infer the past  

- evaluate counterfactuals  

• together, these capabilities allow us to 
understand why something happened

Conclusion
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Josh Tenenbaum David Lagnado Noah Goodman

Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum (2017) Eye-tracking 
causality. Psychological Science  

Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a 
probabilistic language of thought. In The Conceptual Mind: New Directions in 
the Study of Concepts. MIT Press. 

Gerstenberg, T. & Tenenbaum, J. B. (2017). Intuitive Theories. In Oxford 
Handbook of Causal Reasoning. Oxford University Press.

Max SiegelMatt Peterson


