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Causal Inference in Econometrics

I Despite a strong interest in causal inference in general, graphical models of
causation have not yet caught on in economics

I A couple of (unrepresentative) opinions
I DAGs have not much to o↵er to econometrics (Imbens, 2014)
I We can do equally well with home-made methods (Heckman and Pinto, 2013)
I DAGs are useful as a pedagogical tool, but nothing more
I We haven’t seen a killer application of DAGs yet

I Technology adoption is a coordination problem (because of network e↵ects), usual
obstacles are

I Switching costs
I Disciplinary silos
I Resistance by incumbents
I Gate-keeping

I To move from one equilibrium to the next you need a strong “value proposition”



Structural Causal Models in Economics

I The notion of interventions in structural
causal models goes back to Haavelmo
(1943) and Strotz and Wold (1960)

I Quasi-deterministic functions with
stochastic background factors

I Interventions = “wiping out” of
equations in the system

I The concept of causality developed by
Pearl (1995) is very natural to economists

I In contrast to statisticians, for example
I More natural than the potential

outcomes framework
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Structural Econometrics vs. Potential Outcomes

I Econometrics is currently dominated by two competing streams
I Structural econometrics

I Very much in the tradition of Haavelmo (1943) and Strotz and Wold (1960)
I In practice, relies on distributional assumptions and (parametric) shape restrictions
I Work by, e.g., Matzkin (2007) that aims to relax parametric assumptions, but

I still relies on (weaker) shape restrictions, and is not widely adopted in applied work

I Potential outcomes framework (Rubin, 1974; Imbens and Rubin, 2015)
I Does impose crucial identifying assumptions (e.g., ignorability) without reference to

an underlying model (“black box character”)
I A feature that has been frequently criticized by the structural camp (e.g., by

Rosenzweig and Wolpin, 2000 and Heckman and Urzua, 2009)

I In practice, causal inference in PO boils down to the four “tricks of the trade”
(matching, IV, RDD, di↵erence-in-di↵erences)

) DAGs are a perfect “middle ground” between structural econometrics and PO



Confounding Bias

I Backdoor adjustment in causal diagrams
I Many econometricians have probably heard about backdoor adjustment by now
I They agree that DAGs are useful for justifying ignorability assumptions and use it in

teaching (Cunningham, 2018)

I Front-door adjustment
I Much less known in econometrics
I Recent application of the front-door criterion in a di↵-in-di↵ setting by Glynn and

Kashin (2017)

I Collider Bias
I Economists talk about “bad controls” (Angrist and Pischke, 2009), but this concept

usually raises more questions than it answers
I Recent example: Google tried to defend itself against allegations of wage

discrimination by presenting salary statistics conditional on occupation, which likely
introduces collider bias



Identification by Surrogate Experiments

I Surrogate experiments are ubiquitous in economics
I E.g., “encouragement designs” in development

economics (Duflo et al., 2008)

I However, applications remain almost exclusively
within the IV / LATE framework (Imbens and
Angrist, 1994)

I Not nonparametrically identified (Balke and Pearl,
1995), requires shape restrictions for the first stage
(Imbens and Angrist, 1994)

I Complete nonparametric solution for z-identification
problem in causal diagrams (Bareinboim and Pearl,
2012a)

I Z-identification = answer a causal query
P(y |do(x)) with the help of do(Z )
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Selection Bias

I Non-random, selection-biased data is a frequent problem in economics
I Knox et al. (2019), for example, criticize papers that try to measure the degree of

racial-bias in policing with the help of administrative records
I Problem: An individual only appears in the data, if it was stopped by the police
I If there is a racial bais in policing, stopping can be the result of minority status
I There are unobserved confounders, such as o�cers’ suspicion, between the selection

variable and outcome
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Selection Bias

I Econometrics has developed several methods for dealing with selection bias
I They usually involve functional-form assumptions about the selection propensity

score P(S |PA) (Heckman, 1979), assume ignorability of selection (Angrist, 1997),
or employ partial identification methods (Manski, 2003; Knox et al., 2019)

I There is a principled solution for dealing with selection bias based on do-calculus,
which refrains from any distributional or functional-form assumptions (Bareinboim
and Pearl, 2012b; Bareinboim et al., 2014; Bareinboim and Tian, 2015)

I These methods also allow to freely combine biased and unbiased data in order to
increase identifying power (Bareinboim et al., 2014; Correa et al., 2017)



Transportability

I Causal knowledge is usually acquired in di↵erent contexts than it is supposed to be
used (e.g., in a laboratory experiment)

I If domains di↵er structurally in important ways, how can we be sure that causal
knowledge remains valid across contexts?

I This problem is known under the rubric of “transportability” in the causal AI field

I Social scientists more often use the term “external validity”
I Example: Banerjee et al. (2007) study the e↵ect of a randomized remedial

education program for third and fourth graders in two Indian cities: Mumbai and
Vadodara

I They find similar e↵ects on math skills, but e↵ect positive impact on language
proficiency is much smaller in Mumbai compared to Vadodara



Transportability

I Banerjee et al. (2007) explain this result by baseline reading skills that were higher
in Mumbai, because families are wealthier there and schools are better equipped

I What do we do if we do not have a second experiment to validate our results?
I We can incorporate knowledge about structural di↵erences across domains by a

selection node (⌅) in a causal diagram
I Captures the notion that domains di↵er either in the distribution of background

factors P(Ui ) or causal mechanisms fi in the underlying structural causal model
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Transportability

I Transportability task = express causal query P
⇤(y |do(x)) in target domain with the

help of causal knowledge in a source domain (Pearl and Bareinboim, 2011)

I Bareinboim and Pearl (2013a) develop a complete nonparametric solution for this
task based on the selection diagram (DAG augmented with selection node)

I Moreover, there is the possibility to combine causal knowledge from several
di↵erent source domains (Bareinboim and Pearl, 2013b)

I Meta-analyses are becoming increasingly popular in economics (Card et al., 2010;
Dehejia et al., 2015)

I However, by simply averaging out results, they completely disregard potential
domain heterogeneity

I Possibility to combine transportability with idea z-identification to what is called
“mz-transportability” (Bareinboim and Pearl, 2014)



Algrithmatization of Causal Inference

I There exist algorithmic solutions for all the inference tasks just discussed
I Dealing with confounding bias (Tian and Pearl, 2002; Shpitser and Pearl, 2006)
I Z-Identification (Bareinboim and Pearl, 2012a)
I Selection bias (Bareinboim and Tian, 2015)
I Transportability (Bareinboim and Pearl, 2013a, 2014)

I Input:
1. A causal query Q
2. The model in form of a diagram
3. The type of data available

I Output: an estimable expression of Q
I Most algorithms possess completeness property (i.e., they return a solution

whenever one exists)

I Analyst can fully concentrate on the modeling and the scientific content, the
identification is done automatically



The Data Fusion Process

Query:

Q	=	Causal	effect	at	target	population

Estimable	exp-

ression of	Q

Causal	Inference	Engine:

Three	inference	rules	of	

do-calculus

Model:

Available	Data:

Observational: P(v)

Experimental:			 P(v	|	do(z))

Selection-biased: P(v	|	S	=	1)	+

P(v	|	do(x),	S	=	1)	

From	different	 P(source)(v	|	do(x))	+	

populations:	 		 observational	studies

(1)

(2)

(3)

Assumptions	need	to	be	strengthened	

(imposing	shape	restrictions,	distri-

butional assumptions,	etc.)

Solution exists? Yes

No



Conclusion

I Graphical models of causation provide a unified framework for causal inference that
allow to solve most of the recurrent problems econometricians face in applied work

I Structural causal models and DAGs are so natural to econometrics methodology,
there is no need to reinvent the wheel just to replace do-calculus with something
home-grown

I Possibilities to automatize the identification step are still – more or less – unknown
in econometrics

I What can we do to facilitate knowledge exchange between economics and CS?
I We need more practical applications in econometrics

I Requires a detailed engagement with the relevant literature
I Time-consuming and risky

I Lowering switching costs by providing good educational resources and software
packages



The S-curve of Technology Adoption (Griliches, 1957)



The S-curve of Technology Adoption (Griliches, 1957)
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