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» Allow sampling from distribution without explicit
parameterization.

* Learn a mapping from known noise to dq’_rq,,is_frribu’rion.
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» Learning distribution H_.[ S— ]_, N
with the help of adversary Y >[ e e rieo

x

« Generator — discriminator
optimize opposite objectives

m(%n max Eimpaata () 108(D(T))] + Epnp, () [log(1 — D(x))]

* [terative fraining with stochastic gradient descent



« WGAN]JArovsky'17]:
Optimizing Wasserstein metric instead of Jensen-Shannon
divergence - more stable training

« BEGAN|[Berthelot’17]:
Use auto-encoder in the discriminator. More realistic face images

 Many more (Progressive GAN, Style GAN)

See
https://github.com/hindupuravinash/the-gan-zoo



« Can only sample from given data distribution.

* No way 1o “dream of” new distributions.



Weaknesses of GANSs

[Other than actually training them]

« Can only sample from given data distribution.

* No way to “dream of” new distributions.

Our idea: Use causal knowledge to generate
samples from interventional distributions.



« Can only sample from given data distribution.

* No way 1o “dream of” new distributions.
Our idea: Use causal knowledge to generate
samples from interventional distributions.

« Application:
Causal image generation with labels.



* Image generation w/ labels as a causal process

« Assume causal graph is given

« Assume Image is always the
sink node

Eye-
glasses

Challenge 1: Need to capture the causal structure.
Challenge 2: Training binary variables alongside image is difficult.



1. How to capture causal models
with neural nets

2. Train causal generative model
for labels

3. Train a conditional GAN to
sample the image given labels

4. Combine label and image Causall Cond.
generation generative model GAN for
for labels image



« Causal graph  Structural equations:

X 7Y X=1f(E), Y=g(E), Z=h(X,Y,E)



« Causal graph
X—> /LY

 Structural equations:

i

Nx Feed Forward NN

Y

Ililiby

Ny Feed Forward NN

X = f(Ex),

Feed Forward NN

Y =g(E). Z=h{X, Y, E)
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 Structure the generator based on
causal graph

Nx

« Use GAN fraining f

7 Feed Forwar X
Remark: Wasserstein GAN ., N2 ™ riminetor J pirea)
fraining for discrete labels — X
=k
* Theorem:

Correct causal graph + True observational distribution
True Interventional distributions
[under strict positivity]



CausalGAN: Causal Generative
Model over Labels and Image

e Pre-train causal model over
labels — causal conftroller

e Use a conditional GAN,
given labels

S
>

« A new conditional GAN with - ,
theoretical guarantees : :
Trained Conditionadl
[CGAN w/ same guarantee] Causal Controller GAN for
Image
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« New architecture/loss
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e New architecture/loss ’(
Anti- _ Label
Labeler - Estimate

Causal
Controller

N

Generator G(Z,Lg) Discriminator P(Real)

N |

Dataset J\X *LLabeler | A Elgt?rgzlte

« Generator minimizes Labeler Ioss maximizes Anti-Labeler 10ss



Label
Estimate

Labeler
Causal
H‘
L

N Generator ) G(Z,Lg) Discriminator}‘P(Real)
./
/2
Theorem: ‘ Dataset 1 X] Labeler i‘ Estmate
Optimize generaftor for the optimum Q\D
Discriminator, Labeler, Anti-Labeler. L

Then global optimal generator G* samples from

P(G*(Z, lg) — :E) = IP)(X — ZL“’LG — lg)



Total Variation Distance
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TVD of Label Generation
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Remark: Correctness of causal direction does not affect how well NNs can fif.
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Resulls: CausalGAN
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@ Conditioning on Mustache = 1
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Intervening on Mustache =1

P(Male =0 | do(Mustache = 1)) = P(Male =0) ~ 0.6
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Resulls: CausalGAN

Intervening on Lipstick = 1

P(Male =1 | do(Lipstick =1)) =P(Male=1) ~0.5
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Intervening on Mustache = 1
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Resulls: CausalBEGAN

Bald

Bald Intervening on Bald =1
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Questions?



