CausalGAN
Learning Causal Implicit Generative Models with Adversarial Training

Murat Kocaoglu
MIT-IBM Watson AI Lab
Cambridge, MA

WHY'19 Symposium
March 25, 2019

Based on joint work with
Chris Snyder
Alex Dimakis
Sriram Vishwanath
Implicit Generative Models

• Allow sampling from distribution without explicit parameterization.

• Learn a mapping from known noise to data distribution.
Generative Adversarial Networks
[Goodfellow’14]

• Learning distribution with the help of adversary

• Generator – discriminator optimize opposite objectives

\[
\min_G \max_D \mathbb{E}_{x \sim p_{data}(x)}[\log(D(x))] + \mathbb{E}_{x \sim p_g(x)}[\log(1 - D(x))]
\]

• Iterative training with stochastic gradient descent
Improved GANs

• WGAN[Arjovsky’17]:
 Optimizing Wasserstein metric instead of Jensen-Shannon divergence - more stable training

• BEGAN[Berthelot’17]:
 Use auto-encoder in the discriminator. More realistic face images

• Many more (ProgressiveGAN, StyleGAN)

See
https://github.com/hindupuravinash/the-gan-zoo
Weaknesses of GANs
[Other than actually training them]

• Can only sample from given data distribution.

• No way to “dream of” new distributions.
Weaknesses of GANs
[Other than actually training them]

• Can only sample from given data distribution.

• No way to “dream of” new distributions.

Our idea: Use causal knowledge to generate samples from interventional distributions.
Weaknesses of GANs
[Other than actually training them]

• Can only sample from given data distribution.

• No way to “dream of” new distributions.

Our idea: Use causal knowledge to generate samples from interventional distributions.

• Application:
 Causal image generation with labels.
Bringing Causality into Generative Models

- Image generation w/ labels as a causal process
- Assume causal graph is given
- Assume Image is always the sink node

Challenge 1: Need to capture the causal structure.
Challenge 2: Training binary variables alongside image is difficult.
Bringing Causality into Generative Models

1. How to capture causal models with neural nets

2. Train causal generative model for labels

3. Train a conditional GAN to sample the image given labels

4. Combine label and image generation

Causal generative model for labels
Cond. GAN for image
Causal Models from Neural Nets

• Causal graph
 \[X \rightarrow Z \leftarrow Y \]

• Structural equations:
 \[X = f(E_X), \quad Y = g(E_Y), \quad Z = h(X, Y, E_Z) \]
Causal Models from Neural Nets

• Causal graph

\[X \rightarrow Z \leftarrow Y \]

• Structural equations:

\[X = f(E_X), \quad Y = g(E_Y), \quad Z = h(X, Y, E_Z) \]
Training Causal Implicit Generative Models

• Structure the generator based on causal graph

• Use GAN training
 Remark: Wasserstein GAN training for discrete labels

• **Theorem:**
 Correct causal graph + True observational distribution
 ➞ True Interventional distributions
 [under strict positivity]
CausalGAN: Causal Generative Model over Labels and Image

• Pre-train causal model over labels – *causal controller*

• Use a conditional GAN, given labels

• A new conditional GAN with theoretical guarantees

[CGAN w/ same guarantee]
A new conditional GAN

• New architecture/loss
A new conditional GAN

• New architecture/loss

• Generator minimizes Labeler loss, maximizes Anti-Labeler loss
CausalGAN

Theorem:
Optimize generator for the optimum Discriminator, Labeler, Anti-Labeler.

Then global optimal generator G^* samples from label conditioned image distributions:

$$
P(G^*(Z, l_G) = x) = P(X = x | L_G = l_G)$$
Results: Wasserstein GAN Training of Labels

TVD of Label Generation

Causal Graph 1
Results: Wasserstein GAN Training of Labels

Remark: Correctness of causal direction does not affect how well NNs can fit.
Results: CausalGAN

Conditioning on Mustache = 1

Intervening on Mustache = 1

\[P(Male = 0 \mid do(Mustache = 1)) = P(Male = 0) \approx 0.6 \]
Results: CausalGAN

Conditioning on Lipstick = 1

Intervening on Lipstick = 1

\[P(\text{Male} = 1 \mid \text{do}(\text{Lipstick} = 1)) = P(\text{Male} = 1) \sim 0.5 \]
Results: CausalBEGAN

Conditioning on Mustache = 1

Intervening on Mustache = 1
Results: CausalBEGAN

Conditioning on Bald = 1

Intervening on Bald = 1
Questions?